短路电流周期分量实用计算方法适用性研究
丁北平,曹炜,张文青,靳希,杨秀
(上海电力学院,上海,200090)
摘要:本文首先提出一种考虑衰减的短路电流周期分量计算方法,然后通过IEEE9算例分别用PSS/E电力系统机电暂态仿真、PSCAD/EMTDC电力系统电磁暂态仿真对该方法进行了校核,结果表明该方法有望在保证有效安全裕度的情况下,计及衰减计算短路电流的周期分量,使电网断路器校核有更科学合理的依据。
关键词:短路电流计算;短路电流衰减;PSS/E软件;BKDY模块;PSCAD/EMTDC软件
0 引言
目前我国部分电网500kV变电站面临短路电流超标问题,而与之相应的短路电流计算国家标准和高压断路器开断能力校核判据又相对保守[1][2][3]。国家标准在高压环网中未考虑短路电流周期分量的衰减,将断路器断开瞬间的短路电流周期分量视为短路发生时刻的短路电流周期分量,由于短路电流是衰减的,所以按标准计算得出的断路器需开断的电流就会大于断路器实际需开断的电流,断路器的开断能力没有得到充分的利用。为充分发挥系统中已运行断路器的潜力,需要考虑短路电流的衰减。
电力系统分析软件PSS/E提供了考虑短路电流周期分量衰减的计算模块即BKDY模块,本文通过IEEE9典型算例介绍该模块的使用情况,同时介绍基于暂态电抗Xd′短路电流周期分量计算方法,即以暂态电抗Xd′计算运行中的断路器在开断时刻的短路电流周期分量,并将计算结果与相同条件下BKDY模块计算结果、机电暂态仿真结果、电磁暂态仿真结果进行比较,以分析该方法的可行性。
周期分量,同时规定在环网运行情况下,当进行短路水平校核与断路器选型时,将短路电流周期分量的起始值或经阻抗修正后的短路电流计算值作为开断电流,从计算结果看,根据这两个标准计算出的短路电流未充分考虑次暂态电流的衰减影响,开断电流偏大[4][5]。
1.2 基于暂态电抗Xd′短路电流周期分量计算方法
东京电力公司目前采用暂态电抗Xd′来进行短路电流计算,其依据是短路电流次暂态分量是一个衰减很快的过程,选用Xd′足以反映电网故障后断路器开断时的物理过程,适合工程应用需要。
从有阻尼绕组同步电机突然三相短路后的短路电流计算式可以知道,短路电流周期分量可以近似分为按不同时间常数衰减的两个自由分量和稳态分量的叠加,其中迅速衰减的分量为次暂态分量,其时间常数为Td\"(小于Td0\",数量级为几十微秒),衰减比较缓慢的分量为暂态分量,其时间常数为Td′(小于Td0′,数量级为几秒)。以某型同步电机为例,Td0\"、Td0′分别为0.04秒、8.96秒,若电网中高压断路器动作时间为0.05或0.1秒,则理论计算发生故障后该发电机提供的短路电流次暂态分量、暂态分量0.05秒内分别衰减了约71.35%、0.56%,0.1秒内分别衰减91.79%、1.11%。可以看到次暂态分量在断路器动作时(短路后0.06~0.1秒)接近衰减完毕。所以,将暂态电抗Xd′作为短路计算电抗参数输入PSS/E普通短路电流计算模块进行短路电流计算,当此计算值不低于电网故障后开断 时刻的短路电流时,以此计算值校核高压断路器的开断能力,从而近似考虑短路电流周期分量的衰减影响,有效降低电网短路电流计算水平。
1.3 基于PSS/E BKDY模块的短路电流周期分量计算方法
1
1短路电流计算
1.1 当前短路电流计算标准及其局限性
当前世界范围内有两个应用较广的标准对短路电流计算方法有详细规定,分别是国际电工委员会的IEC标准和美国的ANSI标准。这两个标准都能较准确的对短路电流进行计算,因此许多国家在制定自己的国家标准时都参照这两个标准,如我国的国家标准《三相交流系统短路电流计算》GB/T 15544-1995就是等效采用了欧洲的IEC 909(1998)。虽然这两个标准的短路电流周期分量计算结果从安全角度来看都是令人满意的,但是,它们均以发电机次暂态电抗Xd\"(或其修正值)作为参数计算稳态最大运行方式下短路电流
基金项目:上海电力学院研究生创新基金项目(D08113)
目前国内使用的电力系统仿真软件如PSASP、BPA及PSS/E,它们的常规短路计算模块都是只计算短路电流初始周期分量Ik\",不能计算短路电流周期分量的衰减;PSS/E除用其常规短路电流计算模块可以进行常规短路电流计算外,还提供了一种短路电流周期分量衰减曲线的计算方法,即BKDY计算模块。BKDY模块将电网短路后电流的复杂物理变化过程(以微分方程组表示)简化成了一个代数算式,它能够较精确地描述短路后磁链及短路电流的变化情况。
图1 IEEE 9节点系统示意图
2短路电流校核
由于暂态仿真数据准备、建模较复杂,计算机计算所需内存和运算量均较大,通常不作为计算短路电流的常规方法,但可以用它来校核常规短路电流计算结果的准确性。
2.1 PSS/E机电暂态仿真校验短路电流
电力系统的机电暂态仿真实质上是解微分方程组,它较本文第2部分所述三种方法更精确考虑了发电机等电气元件模型,因此计算会更精确。本文进行机电暂态仿真计算时,发电机用六阶(或五阶)准稳态模型,由于PSS/E的 BKDY模块不涉及发电机励磁和调速系统,为便于比较,机电暂态仿真时也不考虑它们的作用。
作者用PSS/E机电暂态模块和BPA机电暂态模块对IEEE 9算例进行了机电暂态仿真,两程序算出的短路电流曲线基本吻合;文献[6]也从系统稳定性判别的角度出发,用上述两程序对该算例进行了机电暂态仿真,所得到的功角差曲线也基本相合,这说明虽然PSS/E和 BPA的同阶发电机模型有微小的差别,但不影响机电暂态仿真结果准确性。
2.2 PSCAD/EMTDC电磁暂态仿真校验短路电流
在所有仿真计算方法中,电气设备模型考虑最为详细的是电磁暂态仿真。但电磁暂态仿真计算出的短路电流含直流分量和周期分量,需要将其中的周期分量滤出,才能和本文中其它方法计算出的短路电流相比较。本文使用快速傅立叶算法FFT对电磁暂态仿真波形进行滤波处理。
发电机参数如表1,其中电抗为标幺值,时间常数单位为秒。PSS/E暂态分析时发电机Gen1采用GENSAL模型,Gen2、Gen3采用GENROU模型,不考虑电抗饱和。
表1 发电机参数
3.2 仿真结果分析
设图1所示的电力系统中母线Bus1三相短路,用PSS/E BKDY模块、PSS/E机电暂态模块、PSCAD/EMTDC电磁暂态仿真、PSS/E基于暂态电抗Xd′的普通短路电流计算模块的计算结果见图2和表2,母线BusA三相短路的短路电流计算结果见图3和表3。
图2 母线Bus1三相短路时短路电流周期分量衰减图 表2 母线Bus1三相短路时短路电流周期分量衰减计算表
基于暂
短路时间/S 0.00 0.02 0.03 0.04
BKDY 计算 /A 3744.1 3456.0 3360.0 3286.4
机电暂态仿真/A 3744.2 3448.2 3378.0 3333.1
电磁暂态仿真 /A / / 3500.2 3401.1 3336.3
态电抗的短路计算 /A 3211.0
3744.1
0.01 3580.6 3608.8
常规短路计算/A
3 仿真结果分析
下面将以IEEE 9节点系统为考察对象[7],分别使用PSS/E BKDY模块、PSS/E机电暂态模块、PSCAD/EMTDC电磁暂态仿真、PSS/E普通短路电流计算模块采用暂态电抗Xd′计算短路电流周期分量,并对比分析计算结果。 3.1仿真模型说明
IEEE 9节点系统拓扑结构如下图。
0.05 3228.6 3259.0 3288.4
2
0.06 3182.9 3214.8 3245.7 0.07 3146.3 3176.9 3210.6 0.08 3116.6 3142.7 3184.4 0.10 3071.6 3079.9 3142.8
图3 母线BusA三相短路时短路电流周期分量衰减图 表3 母线BusA三相短路时短路电流周期分量衰减计算表
基于暂
短路时间 /S 0.00 0.02 0.03 0.04
BKDY 计算 /A 2450.1 2317.8 2270.7 2232.4
机电暂态仿真 /A 2450.1 2331.3 2298.5 2267.5
电磁暂态仿真 /A / / 2349.6 2304.7 2275.2
2450.1
态电抗的短路计算 /A 0.01 2376.5 2398.4
常规短路计算/A 2241.7
0.05 2201.0 2240.0 2251.8 0.06 2174.9 2219.7 2229.1 0.07 2153.0 2199.9 2210.3 0.08 2134.4 2181.8 2194.4 0.10 2104.4 2148.2 2168.1
系统中,基于暂态电抗Xd′的短路电流周期分量计算结果较常规计算结果下降明显。
第三,比较基于暂态电抗Xd′的短路电流周期分量计算结果与上述三条计算曲线的关系。对离发电机较远的母线如BusA,由表3可以看出,当电网中高压断路器最快动作时间不小于0.06秒时,BusA三相短路,基于暂态电抗Xd′的短路电流周期分量计算值大于其余三种算法(PSS/E BKDY 计算、PSS/E机电暂态仿真和PSCAD/EMTDC电磁暂态仿真)的计算值,计算相对保守,即此故障中基于暂态电抗Xd′的短路电流周期分量计算结果较为保守地考虑了短路电流周期分量的衰减。因为电网中高速断路器动作时间一般大于这个时间,所以基于暂态电抗Xd′的短路电流算法在计算该故障点短路时有足够的安全裕度。
表2所示,当算例电网中高压断路器最快动作时间等于或大于0.07秒时,Bus1短路,基于暂态电抗Xd′的短路电流周期分量计算值大于其余三种算法的计算值,计算相对保守;若断路器最快动作时间小于0.07秒(例如0.05秒),则由表2看出,基于暂态电抗Xd′的短路电流周期分量算法较其余三种算法冒进。由于母线Bus1靠近发电机G1,有必要将短路电流分为发电机G1提供的部分(见表4)和网络提供的部分(见表5)。
表4 Bus1三相短路时发电机Gen1提供的短路电流交流
分量衰减计算表
基于暂
短路时间/S 0.00 0.02 0.03 0.04
BKDY 计算 /A 2525.2 2330.9 2269.4 2223.6
机电暂态仿真/A 2525.3 2315.8 2269.5 2248.6
电磁暂态仿真 /A / / 2371.0 2291.0 2238.6
2525.2
态电抗的短路计算 /A 0.01 2413.7 2430.8
常规短路计算/A 对以上的仿真结果从以下三个方面进行分
析:
第一,比较三条曲线(PSS/E BKDY 计算曲线、PSS/E机电暂态仿真曲线与PSCAD/EMTDC电磁暂态仿真曲线)。从图2~图3可以看出,上述三条计算曲线基本趋于一致;从母线Bus1三相短路时的计算结果来看,机电暂态仿真曲线、BKDY 计算曲线与电磁暂态仿真曲线在短路后0~0.1秒时间内最大差别分别为0.69%、1.54%。
第二,比较基于暂态电抗Xd′的短路电流周期分量计算结果和常规短路电流计算结果(见表2和表3)。经作者验证,以PSS/E进行的常规短路电流计算(基于Xd\")结果与PSS/E BKDY 计算曲线、PSS/E 机电暂态仿真曲线在短路起始时刻的数值完全相等。表2可以看出,当母线Bus1三相短路时,PSS/E常规短路电流计算结果为3744.1安培,PSS/E基于暂态电抗Xd′的短路电流周期分量计算结果为3211安培,比前者降低了14.24%,表3同样分析可以看出,基于暂态电抗Xd′的短路电流算法较常规算法降低了8.51%。可见在该网络
2108.3
0.05 21.4 2195.6 2202.1 0.06 2163.7 2171.7 2174.6 0.07 2144.3 2153.6 2154.5 0.08 2129.6 2139.6 2139.4 0.10 2109.7 2120.3 2119.3
表5 母线Bus1三相短路时网络节点BusA和BusB提供
的短路电流交流分量衰减计算表
基于暂
短路时间/S 0.00 0.02 0.03 0.04
BKDY 计算 /A 1219.0 1090.7 1050.0 1015.3
机电暂态仿真/A 1219.0 1141.7 1120.6 1100.3
电磁暂态仿真 /A / / 1155.1 1125.5 1105.2
态电抗的短路计算 /A 1078.5
1219.0
0.01 1139.2 1185.1
常规短路计算/A 3
0.05 985.5 1083.7 1088.7 0.06 959.7 1069.3 1072.5 0.07 936.9 1056.6 1058.7 0.08 916.8 1045.3 1046.8 0.10 882.6 1025.6 1026.6
对于发电机G1提供的短路电流,由表4可以看出,若断路器最快动作时间小于0.1秒,基于暂态电抗Xd′的短路电流周期分量算法较其余三种算法冒进。对于网络提供的短路电流表5可以看出,若断路器最快动作时间大于0.06秒,基于暂态电抗Xd′的短路电流周期分量算法较其余三种算法保守。即在该算例中,假设断路器动作快速切除故障(如短路后0.05秒动作),基于暂态电抗Xd′短路电流周期分量算法出现离发电机较近处故障冒进、较远处故障保守的情况。下面对这种现象作分析。
在含有高速断路器的电网中,若断路器故障后动作速度较快(如短路后0.05秒动作),则次暂态分量在断路器动作时不会全部衰减完毕(如本文2.2所列举的发电机其短路电流周期分量在0.05秒内衰减了约71.35%),此种情况下若发生离发电机较近处的故障,由于较近处故障中次暂态分量比重较大,断路器开断电流中会剩有较多含量的次暂态分量,此时用基于暂态电抗Xd′短路电流算法计算会因忽略了短路电流中含量仍较大的次暂态分量而相对冒进,如表4所示情况;离发电机较远处故障因次暂态分量比重小而使断路器开断电流中次暂态分量很少或几近没有,此时用基于暂态电抗Xd′短路电流算法计算会相对保守,如表5所示情况。总之,在该算例网络的短路电流衰减程度上,基于暂态电抗Xd′短路电流算法与机电暂态、电磁暂态仿真结果相比离发电机较远处故障时略显保守,较近处故障时略显冒进。
实际电网短路后断路器开断瞬间的短路电流周期分量的衰减程度与电网参数关系密切,用暂态电抗Xd′进行计算是否偏于保守需具体网络具体分析。
电暂态仿真。
z 在该算例中基于暂态电抗Xd′的短路电流周
期分量算法与传统短路电流算法相比,计算值降低8%以上;
z 基于暂态电抗Xd′的短路电流周期分量计算
方法能较适当考虑短路电流周期分量的衰减,在该算例网络的短路电流衰减程度上,该算法与机电暂态、电磁暂态仿真结果相比离发电机较远处故障时略显保守,较近处故障时略显冒进。
z 从计算所需数据量和建模计算复杂性角度
看,基于暂态电抗Xd′的短路电流周期分量算法相当于常规的短路电流算法,比其余算法更简单快捷。
参考文献
[1] IEC 60909-0:2001,Short-circuit currents in three-phase a.c.
systems–Part 0:Calculation of currents[S].
[2] GB/T15544-1995,三相交流系统短路电流计算标准[S]. [3] GB 1984-2003,高压交流断路器国家标准[S]
[4] Alberto Berizzi,Stefano Massucco, Andrea Silvestri,Dario
Zaninelli. Short-Circuit Current Calculation:A Comparison between Methods of IEC and ANSI Standards Using Dynamic Simulation as Reference[J]. IEEE Transactions on Industry Applications,30(4):1099-1106.
[5] S. Mark Halpin,Giuseppe Parise.A comparison of the
characteristic currents method with IEC, ANSI-IEEE, and dynamic simulation procedures for fault calculations[J]. Industrial and Commercial Power Systems Technical Conference, 1995:105-111.
[6] 祝瑞金,傅业盛.PSS/E稳定计算程序发电机模型初探[J].华东
电力,2003,31(7):1-5.
[7] 中国版BPA暂态稳定程序培训手册[Z].2.1版.北京:中国电力科
学研究院,2000.
作者简介:丁北平(1982-),男,硕士,主要研究方向
为电力系统仿真与控制,电力系统无功优化。Email:dbp07@163.com.
4 结论
基于暂态电抗Xd′的短路电流周期分量计算以高压断路器不会在电网短路瞬间动作跳闸为出发点,计算断路器在开断时刻的短路电流周期分量,以此对高压断路器的开断能力进行校验,根据IEEE9算例仿真计算结果可得出如下结论: z 在短路电流衰减曲线的计算上,PSS/E机电暂
态仿真曲线与PSCAD/EMTDC电磁暂态仿真曲线具有较好的一致性;PSS/E BKDY模块的计算结果也较好,但其与PSCAD/EMTDC电磁暂态仿真曲线的吻合程度略低于PSS/E机
4