您好,欢迎来到纷纭教育。
搜索
您的当前位置:首页通信学科前沿讲座(精选五篇)

通信学科前沿讲座(精选五篇)

来源:纷纭教育
通信学科前沿讲座(精选五篇)

第一篇:通信学科前沿讲座

《通信学科前沿讲座》之心得

摘要:简要回顾各位老师的讲座内容,做出自己的心得体会,并论述雷达信号处理。

关键词: 心得体会,雷达信号处理 1.引言

通过这七周的通信学科前沿讲座的学习,我对通信这个学科有了一个新的认识,逐渐形成了自己新的看法与见解,特别是对雷达信号处理有了更加深刻的了解。也明白了作为通信专业研究生应该掌握的知识和技能。

2.心得与体会

以前去上课总是后多或少的带着应付与应试的态度,然而毕竟自己对通信有着发自内心的热爱与非常浓厚的兴趣,去上这门课的时候,心中特别的期待,对老师即将讲到的学科前沿技术非常的好奇。老师对专业前沿和核心技术的讲授也果真没有让我失望,唯一的遗憾是这门课的周期太短,有种意犹未尽的感觉,这些优秀的老师的一言一行已深深印入我的脑海。他们,邵老师,刘老师,黄老师,陈老师,全老师,谢老师,赵老师......在每次短短的两小节课中,我都被他们研究的那些专业技术深深的吸引着。虽然以我现在的水平还不能弄懂,但我却看到了我们专业的一片大好的未来。这对我来说是一个非常强大的动力,同时这些不易弄懂的技术也给了我不小的压力,但我毫不畏惧,我会在老师正确的引导下努力的探索与学习。

由于时间和我们有限的知识水平,老师都只能为我们勾勒出通信专业的轮廓,他们耐心地为我们介绍了他们的研究方向和研究内容,简单地向我们描述了这些研究将来的发展前景与实际意义。总的来说,也许理论逻辑上的很专业的知识我们没有学到多少,但老师们利用这不到两个小时的时间,就基本上将一个新的技术潮流在我们脑中呈现出来,使我们这些只能在学校死啃书本的学生有机会了解与现

实生活有直接联系的科学研究,使我们对一些现实生活中普通人难以琢磨的高科技有了初步的了解,心中也有了一点点谱,同时也增加了一点自信,感觉这些高科技也没有那么神秘,自己通过努力的学习也能实现这些。

各位老师不仅在学术领域给我们打开了新的窗户,使我们豁然开朗,令我最有感触的是他们为我们这帮还未进入社会的书生介绍了他们在工作科研中切身的经验与心得。例如说邵玉斌老师,他不仅为我们介绍了一些专业上的技术,同时,为我们这些刚入学的研究生讲述了一些毕业研究生需要具备的专业技能与专业知识,他苦口婆心烦人教导我们该努力的方向,甚至对一些还是不太明白的学生介绍了一些该阅读的书籍。针对大家制订了一个笼统的学习计划,细致到一天学习几个小时的专业课,记多少单词,学多长时间英语等等。邵老师的这份细致与对学生的关怀深深的打动了我,我想其他学生也深受教导,因为我看见不止一个同学在这之后拿了一本邵老师推荐的《傲慢与偏见》在细细品读。还有刘云老师他让咱们真实的见证了知识的力量,他把他从大学到现在的经历一一展现给大家,介绍他的奋斗史,让大家直呼精彩。他在现实的角度给我们介绍了马云的敛财之道,作出了很精辟的点评。最后,他说了一句让大家感受深刻的话:如果你很聪明那你应该去寻找一切省钱的方法,如果你聪明绝顶你应该把这门课和社会联系起来。

最令我感兴趣的学科前沿技术是刘老师和谢老师给咱们介绍的雷达信号方面的知识,下面,我陈述一下听完讲座和查阅相关资料后,自己对这方面的一些了解。

3.雷达信号处理

雷达信号处理是为完成雷达数字信号检测和信息提取功能所采取的实施手段。物体的反射回波是微弱的高频信号,经过变频、放大和滤波等处理变成具有一定强度的模拟信号(时间上连续,幅度上可为任意实数值)。数字处理须采用模拟-数字转换器,把模拟信号转换成为数字信号(时间上离散,幅度上分层),然后进行各种运算和处理

【1】

。早期的雷达信号处理,几乎全部是模拟的。50年代出现利用计算机进行信号处理的雷达系统。这是雷达数字信号处理的开端,功能还仅限于自动检测。

同雷达的模拟信号处理相比,采用数字信号处理的优点是:①把许多功能综合设计在一部处理机中,可以根据外来指令或预先编好的程序灵活地选择和组合使用。②精度仅与字长有关,不像模拟处理那样,性能与使用人员的调整有关,因此性能稳定可靠。③有利于高速大规模集成电路的应用,从而可使信号处理机的重量减轻和体积缩小。同其他领域的数字信号处理相比,雷达数字信

【2】号处理的特点是信号带宽大,因而采样率高,并且实时输出。因此,单位时间内的处理量(或称吞吐率、解题率)极大。数字转换器把模拟视频信号转换成数字信号,从原理上可分为三个步骤,即采样、保持和分层。

在脉冲雷达中,数字信号处理可划分为周期内处理和隔周期处理两大部分。周期内处理是指对一个周期之内的回波脉冲进行匹配或最佳滤波处理,使单个脉冲的信-噪比达到最大;隔周期处理是指对多个周期中回波脉冲串的复包络进行匹配或最佳滤波处理,使整个脉冲串中某时刻的信-噪比达到最大。对于周期内处理,采样周期应小于或等于测时延(距离)的分辨单元。对于隔周期处理,采样周期可以长达一个重复周期。

数字信号处理可分为四类,即线性非时变、线性时变、非线性非时变和非线性时变。在理论上最容易解决的是线性非时变型的处理。这一类型的模拟处理用线性常系数微分方程描述,从而可以用傅里叶级数或傅里叶变换求解。同样,这一类型的数字处理可以采用线性常系数差分方程描述,从

【3】而可以用Z变换或离散傅里叶变换求解。

采用状态变量法解决线性时变型数字处理的分析问题效果较好。这种方法尤其适用于利用电子计算机进行仿真分析。关于含有非线性性质的数字处理,只能对特定问题进行计算机仿真计算,而不能应用叠加原理。

雷达信号处理方法有两种,一种是信号依次进入而形成信号流,另一种是执行完一条指令再执行下一条指令,形成指令流。雷达中的数字信号处理机可采用这两种方法中的任一种,也可以兼用两种方法。一般来说,采样速度高而功能较简单者宜用前者;采样速度较低而功能复杂者则宜采用后者。

在处理中对数据结构有一定要求,位数会影响全机精度。为保持很高精度势必增加字长。为了不使字长过分增加,则须采取截尾或舍入的措施。这些措施等效于在系统中加入噪声。因此,为确保一定精度,系统运算字长应适当地大于输入数据的字长。过长的运算字长会导致机器结构庞大。

对处理机的硬件结构有一定要求特别重要的是数据和指令的存储方式。早期多采用移位寄存器控制方式,后来随机存取存储器方式得到更多的应用,现代雷达信号处理更多采用只读存储器程序固化的方式。

对指令语言也有一定要求。使用语言的级别越高(即面向任务),操作时越方便,即只需一个动作就可适应事先规定的一种场合;语言级别越低(即面向机器),操作时越灵活,即可临时编制程序执行多种不同的任务。

诚然,在雷达成像的研究中还有数不清的难题需要攻克,雷达成像这一研究领域也面临着许多的问题需要解决。在学习图像处理时我们不仅要掌握一维信号处理的基本知识,也要掌握二维或者高维信号处理的知识。其次,图像处理是计算机视觉和视频处理的基础,所以必须掌握图像处理的基本知识。4.结语

听完讲座,我感到压力重大,即使是雷达信号处理一个方面的技术,也还有很多方面值得拓展和探索。同时,这也给了我很大的动力,作为研究生,研究是我们主要的工作,想要取得满意的结果和优异的成绩,我们所要做的就是倍加努力,汲取现有的知识,在新的领域开拓新的研究道路,积极探索,永不止步。

参考文献

【1】(美)理查兹(Ricnards,M.A.)邢孟道 《雷达信号处理基

础》 电子工业出版社 2008-6-1

【2】丁鹭飞,耿富录,陈建春 雷达原理 电子工业出版社 2009-3-1 【3】樊昌信,曹丽娜 通信原理 国防工业出版社 2006-9-1 第二篇:学科前沿讲座

听学科前沿讲座有感

学科前沿是指整个科技体系或学科群中居于主导地位具有带动其它科学发展并影响人们科学观念转变的学科。学科前沿是指某一学科中最能代表该学科发展趋势制约该学科当前发展的关键性科学问题、难题及相应的学说。

在即将毕业之际,即将踏入工作生涯,了解学科前沿是至关重要的。学院在这个时候给我们安排学科前沿讲座,意义是非凡的,我们也应该抓住这次机会认真学习学科前沿知识,为以后的工作生涯和人生打下结实的基础。

因此在听完三位老师的讲座,不禁有感而发,对机械学科的前沿有了更深入的了解。

一、对我国汽车前沿的感悟 中国汽车发展历程

新中国刚一成立就决定发展自己的汽车工业,1953年第一汽车制造厂破土动工,为奠基仪式亲自题写了“第一汽车制造厂奠基纪念”。1956年我国生产的第一辆汽车下线,毛又亲自为其命名———,对于当时工业整体水平非常落后的中国人来说,这确实是一次经济上的。1956年是中国汽车史上令人难忘的一年。5月,第一汽车制造厂试制成功东风牌轿车,送往北京向党的”献礼,这是中国自制的第一部轿车,6月,北京第一汽车厂附件厂试制成功井冈山牌轿车,同时工厂更名为北京汽车制造厂。8月一汽又设计试制成功第一辆红旗牌高级轿车,9月上海汽车配件厂试制成功第一辆凤凰牌轿车。在大跃进的年代,这几辆稚嫩的国产轿车确实让全国人民欢欣鼓舞了一阵子。

六七十年代,除了红旗外,中国惟一大批量生产的轿车就是上海牌轿车。19年,凤凰牌轿车改名为上海牌,并对制造设备做了一系

列改进。首先制成了车身外板成套冲模,结束了车身制造靠手工敲打的落后生产方式,又以此为基础制成各种拼装台,添置点焊机,实现拼装流水线生产,轿车质量得到稳定和提高。1965年上海轿车通过一机部技术鉴定,批准定型。到1979年,上海牌轿车共生产了一万七千多辆,成为我国公务用车和出租车的主要车型。1972年起还对车身进行了改型,并减轻了自重。1980年,该车年产量突破5000辆。1985年,已经开始与德国大众公司合资的上海轿车厂和嘉定县联营另行建厂继续生产上海轿车,并继续做了一些技术改进,一直生产到90年代。在相当长的时间里,上海轿车支撑着国内对轿车的需求,为社会发展做出了贡献。但当时我国的汽车工业是以载货车为主导的,对轿车缺乏应用的重视,这使得我国的轿车工业技术水平长期处于极为幼稚的状态。

改革开放后,我国经济迅速发展,对轿车的需求越来越强,我国落后的轿车工业根本无法满足这种需求。一时间,外国轿车洪水般涌入我国。1984年至1987年,我国进口轿车万辆,耗资266亿元。为了迅速提高中国轿车生产能力和技术水平,我国汽车工业开始走上与国外汽车企业合作、引进消化外国先进技术的发展道路。具体方式基本都是从进口全部散件组装开始,逐渐提高国产化率。纯种的中国汽车也在不断发展,长城、吉利、奇瑞等车厂已经发展壮大起来,技术也越来越好,反正自己孩子自己养,国人支持,他们肯定能做好。

中国汽车的发展方向

中国车企目前还处于开阔市场阶段,但从长远方向看,提高自身产品才是第一要旨。所以中国汽车业将在逐步占领世界市场的同时,加强品牌建设,提高汽车质量和性能,将中国从一个汽车生产大国向汽车研发大国转变。现代汽车电子化、智能化、多媒体化和网络化的应用,不仅提高了汽车的动力性、经济性、安全和环保性,改善了行驶的稳定性和舒适性,推动了汽车工业的发展,还为电子产品开拓了广阔的市场,从而推动了电子工业的发展。因此,大力发展汽车电子化、智能化、多媒体化和网络化,加快汽车电子化速度,是启动和振兴汽车工业的重要手段。也是中国汽车零部件企业的新的经济增长点。

二、矿用绞车前沿感悟

听完的讲座,我深感到矿山机械设备的落后,据所说,矿山设备要落后一般机械二十年。在那里生产的资源推动着中国的发展,然而却没有人去推动他们的发展。

在这里也深刻体会到我校老师独自走入深山的寂寞,也希望国家和社会给予更多的关注,来回馈矿山,感知矿山。解救那些用生命换来工业粮食的矿山工人们,那些对矿上不离不弃的矿大人

三、中国矿业大学的机械电子的感悟

机电是中国矿业大学起步较早的一门学科,也是社会发展的一门前沿学科,机电控制、机电一体化和机电自动化都是现代制造技术所必须的学科。在之前发展也是我校的强势学科,但由于学校领导的不只是,导至学科人才流失,技术失传,相对其他学校机械电子的大发展,而我校的机电学科有逆水行舟不进则退之势。加上学校对机电学科教学的忽视,导至学生对机电的不了解,在以后工作当中对出现问题不知道如何去解决!在这里我也希望学校和学院领导关注一下机电学科的发展,提高学生的综合素质,拓宽学生的知识面。

小结

中国矿业大学有很大一批老师机械学科前沿,为矿业大学机械学科发展付出了不懈的努力。希望学校领导给予大力支持,支持机电学院的老师,支持矿大的机械学科的发展,支持机械学科的教育工作。让我们更有能力去回馈矿山、感知矿山、去为那些为中国发展提供资源和生命的矿山人,为矿山安全、高效开采奉献知识和生命 第三篇:学科前沿讲座

学科前沿讲座

专业班级: 光信13-3_ 姓 名: 朱家兴_ 学 号: _10134425__ 任课教师: 张国营 2016年 11月 11 日 量子计算与量子计算机

【摘要】量子计算的强大运算能力使得量子计算机具有广阔的应用前景。该文简要介绍了量子计算的发展现状和基本原理,列举了典型的量子算法,阐明了量子计算机的优越性,最后预测了量子计算及量子计算机的应用方向。

【关键词】量子计算;量子计算机;量子算法;量子信息处理 1.引言

在人类刚刚跨入21世纪的时刻!科技的重大突破之一就是量子计算机的诞生。德国科学家已在实验室研制成功5个量子位的量子计算机,而美国LosAlamos国家实验室正在进行7个量子位的量子计算机的试验【1】。它预示着人类的信息处理技术将会再一次发生巨大的飞跃,而研究面向量子计算机以量子计算为基础的量子信息处理技术已成为一项十分紧迫的任务。2.子计算的物理背景

任何计算装置都是一个物理系统。量子计算机足根据物理系统的量子力学性质和规律执行计算任务的装置【2】。量子计算足以量子计算目L为背景的计算。是在量了力。4个公设(postulate)下做出的代数抽象。Feylllilitn认为,量子足一种既不具有经典耗子性,亦不具有经典渡动性的物理客体(例如光子)。亦有人将量子解释为一种量,它反映了一些物理量(如轨道能级)的取值的离散性。其离散值之问的差值(未必为定值)定义为量子。按照量子力学原理,某些粒子存在若干离散的能量分布。称为能级。而某个物理客体(如电子)在另一个客体(姻原子棱)的离散能级之间跃迁(transition。粒子在不同能量级分布中的能级转移过程)时将会吸收或发出另一种物理客体(如光子),该物理客体所携带的能量的值恰好是发生跃迁的两个能级的差值。这使得物理“客体”和物理“量”之问产生了一个相互沟通和转化的桥梁;爱因斯坦的质能转换关系也提示了物质和能量在一定条件下是可以相互转化的因此。量子的这两种定义方式是对市统并可以相互转化的。量子的某些独特的性质为量了计算的优越性提供了基础。3.量子计算机的特征

量子计算机,首先是能实现量子计算的机器,是以原子量子态为记忆单元、开关电路和信息储存形式,以量子动力学演化为信息传递

与加工基础的量子通讯与量子计算,是指组成计算机硬件的各种元件达到原子级尺寸,其体积不到现在同类元件的1%。量子计算机是一物理系统,它能存储和处理关于量子力学变量的信息【3】。量子计算机遵从的基本原理是量子力学原理:量子力学变量的分立特性、态迭加原理和量子相干性。信息的量子就是量子位,一位信息不是0就是1,量子力学变量的分立特性使它们可以记录信息:即能存储、写入、读出信息,信息的一个量子位是一个二能级(或二态)系统,所以一个量子位可用一自旋为1/2的粒子来表示,即粒子的自旋向上表示1,自旋向下表示0;或者用一光子的两个极化方向来表示0和1;或用一原子的基态代表0第一激发态代表1。就是说在量子计算机中,量子信息是存储在单个的自旋’、光子或原子上的。对光子来说,可以利用Kerr非线性作用来转动一光束使之线性极化,以获取写入、读出;对自旋来说,则是把电子(或核)置于磁场中,通过磁共振技术来获取量子信息的读出、写入;而写入和读出一个原子存储的信息位则是用一激光脉冲照射此原子来完成的。量子计算机使用两个量子寄存器,第一个为输入寄存器,第二个为输出寄存器。函数的演化由幺正演化算符通过量子逻辑门的操作来实现。单量子位算符实现一个量子位的翻转。两量子位算符,其中一个是控制位,它确定在什么情况下目标位才发生改变;另一个是目标位,它确定目标位如何改变;翻转或相位移动。还有多位量子逻辑门,种类很多。要说清楚量子计算,首先看经典计算。经典计算机从物理上可以被描述为对输入信号序列按一定算法进行交换的机器,其算法由计算机的内部逻辑电路来实现【4】。经典计算机具有如下特点:

a其输入态和输出态都是经典信号,用量子力学的语言来描述,也即是:其输入态和输出态都是某一力学量的本征态。如输入二进制序列0110110,用量子记号,即10110110>。所有的输入态均相互正交。对经典计算机不可能输入如下叠加Cl10110110>+C2I1001001>。

b经典计算机内部的每一步变换都将正交态演化为正交态,而一般的量子变换没有这个性质,因此,经典计算机中的变换(或计算)只对应一类特殊集。

相应于经典计算机的以上两个,量子计算机分别作了推广。量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统(称为量子比特),量子计算机的变换(即量子计算)包括所有可能的幺正变换。因此量子计算机的特点为:

c量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交;

d量子计算机中的变换为所有可能的幺正变换。得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。由此可见,量子计算对经典计算作了极大的扩充,经典计算是一类特殊的量子计算。量子计算最本质的特征为量子叠加性和相干性。量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算的输出结果。这种计算称为量子并行计算,量子并行处理大大提高了量子计算机的效率,使得其可以完成经典计算机无法完成的工作,这是量子计算机的优越性之一。

4.量子智能计算

自Shor算法和Grover算法提出后,越来越多的研究员投身于量子计算方法的计算处理方面,同时智能计算向来是算法研究的热门领域,研究表明,二者的结合可以取得很大的突破,即利用量子并行计算可以很好的弥补智能算法中的某些不足【5】。

目前已有的量子智能计算研究主要包括:量子人工神经网络,量子进化算法,量子退火算法和量子免疫算法等。其中,量子神经网络算法和量子进化算法已经成为目前学术研究领域的热点,并且取得了相当不错的成绩,下面将以量子进化算法为例。

量子进化算法是进化算法与量子计算的理论结合的产物,该算法利用量子比特的叠加性和相干性,用量子比特标记染色体,使得一个染色体可以携带大数量的信息。同时通过量子门的旋转角度表示染色体的更新操作,提高计算的全局搜索能力。

目前量子进化算法已经应用于许多领域,例如:工程问题、信息系统、神经网络优化等。同时,伴随着量子算法的理论和应用的进一

步发展,量子进化算法等量子智能算法有着更大的发展前景和空间。

5.量子计算的应用

1.量子叠加态的计算魅力。在经典物理学中,物质在确定的时刻仅有确定的一个状态。量子力学则不同,物质会同时处于不同的量子态上。因为处于叠加态,这就意味着,量子计算一次运算就可以处理210=1024个数(从0到1023被同时处理一遍)【6】。以此类推,量子计算的速度与量子比特数是2的指数增长关系。一个位的量子计算机一次运算就可以同时处理2=***709551616个数。如果单次运算速度达到目前民用电脑CPU的级别(1GHz),那么这个位量子计算机的数据处理速度将是世界上最快的“天河二号”超级计算机(每秒33.86千万亿次)的545万亿倍。

量子力学叠加态赋予了量子计算机真正意义上的“并行计算”,而不像经典计算机一样只能并列更多的CPU来并行。因此在大数据处理技术需求强烈的今天,量子计算机越来越获得互联网巨头们的重视。

2.肖尔算法――RSA加密技术的终结者。1985年,牛津大学的物理学家戴维・德意志提出了量子图灵机模型的概念。随后贝尔实验室的彼得・肖尔于1995年提出了量子计算的第一个解决具体问题的思路,即肖尔因子分解算法。

我们今天在互联网上输入的各种密码,都会用到RSA算法加密。这种技术用一个很大的数的两个质数因子生成密钥,给密码加密,从而安全地传输密码。由于这个数很大,用目前经典计算机的速度算出它的质数因子几乎是不可能的任务。但利用量子计算的并行性,肖尔算法可以在很短的时间内通过遍历算法来获得质数因子,从而破解掉密钥,使RSA加密技术不堪一击。

量子计算机会终结任何依靠计算复杂度的加密技术,但这不意味着从此我们会失去信息安全的保护。量子计算的孪生兄弟――量子通信,会从根本上解决信息传输的安全隐患。

6.量子计算机的应用前景

目前经典的计算机可以进行复杂计算,解决很多难题。但依然存在一些难解问题,它们的计算需要耗费大量的时间和资源,以致在宇

宙时间内无法完成【7】。量子计算研究的一个重要方向就是致力于这类问题的量子算法研究。量子计算机首先可用于因子分解。因子分解对于经典计算机而言是难解问题,以至于它成为共钥加密算法的理论基础。按照Shor的量子算法,量子计算机能够以多项式时间完成大数质因子的分解。量子计算机还可用于数据库的搜索。1996年,Grover发现了未加整理数据库搜索的Grover迭代量子算法。使用这种算法,在量子计算机上可以实现对未加整理数据库Ⅳ的平方根量级加速搜索,而且用这种加速搜索有可能解决经典上所谓的NP问题。量子计算机另一个重要的应用是计算机视觉,计算机视觉是一种通过二维图像理解三维世界的结构和特性的人工智能。计算机视觉的一个重要领域是图像处理和模式识别。由于图像包含的数据量很大,以致不得不对图像数据进行压缩。这种压缩必然会损失一部分原始信息 参考文献

1.王书浩,龙桂鲁.大数据与量子计算

2.张毅,卢凯,高颖慧.量子算法与量子衍生算法 3.Deutsch D,Jozsa

R.Rapid

solution

of

problems

by

quanturm

computation[C]//Proc Roy Soc London A,1992,439:553-558

4.吴楠,宋方敏。量子计算与量子计算机

5.苏晓琴,郭光灿。量子通信与量子计算。量子电子学报,2004,21(6):706-718

6.White T.Hadoop: The Defintive Guide,California:O’Reilly Media,Inc.2009:12-14

7.王蕴,黄德才,俞攸红.量子计算及量子算法研究进展. 第四篇:控制学科前沿讲座

控制学科前沿 班 级: 姓 名: 学 号: 日 期: 讲座学习小结

2013年5月2号 本学期学院为我们开设了控制学科前沿讲座,

主讲老师是大家慕名已久的杨慧中老师,总的来说,通过对这门课或者说是讲座的学习,我对自动化这个专业的一些问题有了更深的了解,让我对专业的学习有了明确的方向和目标。以下本人选取一个方面进行学习小结。选题:

以地铁工程项目为例,描述其中涉及到哪些控制的理论和技术。 摘要:地铁工程项目管理是一个大系统,具有规模大、实施过程复杂的特点。项目计划的科学化与项目控制的有效性显得尤为重要。文章就地铁工程项目计划与控制的实践进行讨论和研究,阐述了地铁工程项目的计划与控制要点,从实践中去丰富项目管理的思想和方法。

关键词:地铁工程 项目管理 项目计划 项目控制 0 引言

地铁工程是一项庞大而繁杂的系统工程,具有工程技术含量高、施工难度大、组织管理复杂等特点。因此,地铁工程的施工单位一般都是在工期紧、任务重、矛盾多、压力大的情况下进行项目管理。而施工单位几乎全都是国家特大型施工总承包单位,过去对大型项目的施工和管理具有丰富的经验。但随着市场机制的转变,建筑业和基本建设管理改革的不断深化,大型施工单位的生产方式和组织结构必须进行深刻的变革,必须运用科学的项目管理体系,使管理水平更上一个台阶,做到更加科学化和规范化。实事求是地说,目前国内在建的一些地铁工程项目中,相当一部分施工企业离项目管理的标准差距还较大,管理模式陈旧,缺少创新,表现为效率低下,执行力微弱。特别是项目的计划与控制技术,更是缺少科学的手段和方法。这样便很难生产出优质的产品,无法满足经济增长的要求。现就地铁工程中的项目计划与控制技术进行讨论和研究。1 地铁工程项目的特点

1.1 地铁工程项目具有系统性

地铁工程项目是一个大系统[1]。项目的系统性主要表现在项目范围的系统性、项目目标的系统性和项目实施过程的系统性。其项目管理首先是管理系统的运行,体现项目管理的科学理论,应以系统论、控制论和信息论为基础,并细化到项目实施的组织、计划、指挥、控制和协调的有效性上来。因此,地铁工程的项目管理活动要建立系统观念,运用

系统方法进行系统管理。1.2 地铁工程项目具有一次性

地铁工程项目和其它大多数建设项目一样,从项目的实施开始到最终产品完成之间,不会产生完全相同的任务,也不容许重复,更不允许推倒重来。这也给地铁工程项目管理带来了较大的风险。只有充分认识这一特点,才能有针对性地根据项目的特殊情况和要求进行科学、有效地管理,以保证地铁工程的一次成功。1.3 地铁工程项目的空间固定性

地铁工程项目具有空间固定性。规划与设计的线路与地点一旦敲定,项目实施过程不管遇到什么障碍和阻力,均不会轻易改动。因为一个站台点的改动,牵一发而动全身,投资额将会成倍增加。那么对项目管理的要求更为严格,不管多大困难均要进行克服,确保按计划完成工作量,严格进行过程控制达到目标。1.4 地铁工程项目具有高投资性 地铁工程项目均是投资额巨大的项目,少则几十亿,多则过百亿。这就要求项目建设只能成功、不能失败,否则将带来严重后果,对地方或城市的经济发展带来巨大影响。

1.5 地铁工程项目具有较长的周期性

地铁工程项目由于规模大、工作量繁多、技术复杂、专业面宽。因此,其项目的周期也较长,从开工到运行一般需要3~5年时间,要求项目管理者在进行管理时具有长期作业的意识,计划应周详,过程控制应严谨,能承上启下。2 地铁工程项目计划

根据以上地铁工程项目各特点。施工企业应制订详细的工程项目的施工计划。2.1 地铁工程项目计划制订的必要性

项目管理的首要目标是制订一个构思良好的项目计划[2]。对于地铁工程,特别是在作出影响项目整个过程的主要决策的初始阶段,由于项目管理非同于作业,它很少具备重复性,它是一个创造性的过程。项目早期的不确定性很大,所以项目计划必须逐步展开和不断修正,这又取决于能否适当地对计划的执行情况作出反馈和进行控制。一个完善的项目计划可以将失败概率降至最低,将风险控制在一个合理的水平之上,还可以最大限度地保证在预期的时限内达到预期的效果。2.2 地铁工程项目计划制订时应考虑的因素 1)项目计划应具有可调性。即在制订进度计划时必须留有一定的余地。必须充分考虑到项目实施过程中的交叉,尽

量避免冲突和干涉。能够根据预测到的变化和实际存在的差异,及时作出调整。

2)项目计划应具有创造性。充分发挥与利用想象力和抽象思维的能力,对分包商和业主进行充分的了解和掌握,通过创造性地管理和协调,满足项目发展的需要。

3)项目计划应具有分析性。以项目为核心,研究其内外部的各种因素,及时发现各种不利及有利因素。确定各种变量和分析不确定的原因。

4)项目计划应具有响应性。项目计划要以工程小组为核心,注意并行小组之间项目计划的协调。能及时地对项目实施过程中存在的问题作出快速反应,确定问题所在,提供计划的多种可行方案。

2.3 地铁工程项目WBS(WorkBreakdownStructure)为方便制订完善的网络计划,必须对项目工作进行分解[1]。地铁项目工作分解结构举例如图1。地铁工程的项目控制

3.1 地铁工程项目控制的涵义

所谓控制就是为了保证系统按预期目标运行,对系统的运行状态和输出进行连续的跟踪观测[3],并将观测结果与预期目标加以比较,如有偏差,及时分析偏差原因并加以纠正的过程,所以说项目的控制过程是极其复杂的。项目控制示意图见图2。

3.2 地铁工程项目控制的内容、目标及依据

地铁工程项目的控制内容绝不是简单的动力学上所说的控制,它需要许多不同的变量表示项目不同的状态形式。地铁工程项目往往有好多项作业同时进行,它的形态是的,其变量较难量测。同时由于地铁工程自身的特点及高度的社会影响力,除了要求地铁工程项目管理要超出常规的质量、进度、成本三大基本目标与任务外,还应增加安全控制和合同控制两大基本任务,即地铁工程施工项目管理需完成五大主要任务:进度控制、成本控制、质量控制、安全控制、合同控制。具体描述见表1。

3.3 地铁工程项目控制主要方法 1)会议制度。项目开始后,为了有效地控制项目,地铁指挥部会在各个重要的时间节点召开关键会议。会议的主要内容是总结上一阶段工作、分析问题、提出建议和要求。关

键会议也是协调不同学科、不同工作小组、承包商和供应商之间的工作任务的重要手段。项目部还可利用此会议请求相关单位为项目解决一些靠自身无法解决的问题。这种会议是项目控制系统的润滑剂,同时项目部自己内部的各种例会也极为重要。

2)信息文件控制制度。加强信息文件管理也是项目控制的一项重要方法,如重要问题讨论的书面材料、专家论证会会议资料、所有的会议记录、完善的文件档案、文件的分发制度等。3)外联工作的重要性。传统的项目管理中,几乎不存在外联问题,但地铁工程大部分位于市区,作为岩土工程施工,将不可避免地引起环境工程地质问题,其表现为房屋和道路的变形或损坏,由此引起的纠纷和突发事件此起彼伏,修复、赔偿等问题的处理情况也严重影响项目的施工节点。因此,加强外联工作,消除和减少项目的外因影响已成为项目控制的又一种方法。结论

1)地铁工程作为大型工程项目,项目计划与项目控制是该工程项目管理的重要内容。在对项目进行科学的计划条件下,对实施过程进行自始至终的、随时随地的和全面的控制是确保项目成功的关键。

2)项目计划与项目控制的关系体现在计划控制中。它们之间存在着一种紧密的关系,计划实现的保障是由控制来承担的;同时它们还是彼此互为条件的,即没有控制的计划是毫无意义的,而没有计划的控制则是无法实现的。

3)对于地铁工程项目,必须重视项目计划和项目控制的实践性,真正地去完善项目管理行为。地铁工程项目中新的问题和事件层出不穷,一些传统的项目管理模式已经很难凑效。因此,要求在地铁工程项目管理实践中还要进一步丰富项目管理知识体系,以便更快提高项目管理水平,创造更为优质的产品。

参考文献

[1]卢向南.项目计划与控制[M].北京:机械工业出版社,2007.[2]朱宏亮.项目进度管理[M].北京:清华大学出版社,2002.[3]刘伊生.建设项目管理[M].北京:北方交通大学出版社,2001. 第五篇:学科前沿讲座 心得

学科前沿讲座报告

郝倚天 2011021142

报告人:电子工程学院 张福贵老师 地点:1104 时间:2014年12月1日(星期一)14:00 本次讲座,张老师首先介绍了气象雷达的发展历史,接着介绍了相控阵雷达的相关情况,最后详细介绍了数字信号处理在气象雷达中的应用。

一、气象雷达发展概况

美国在80年代初开始研制全相干脉冲多原普勒天气雷达,1988年开始批量生产,并由此组成的美国下一代天气雷达网(NEXRAD)作为美国气象现代化的重要组成部分开始实施。WSR-88D多普勒天气雷达不仅提高了探测能力,还具备了获取风场信息的功能,并提供了丰富的监测和预警产品。2000年NEXRAD业务布网完成,包括了158部业务雷达,分布在美国本土以及近海和岛屿,雷达间的最大距离为250海里。NEXRAD网的布设,大大提高了对灾害性天气,尤其是暴雨的预报能力,对龙卷形成前奏-中尺度气旋和机场附近的下击暴流的识别具有特殊的能力。上世纪末,美国开始NEXRAD Open System的改进工作,重点在双线偏振技术的引入和数据网络结构的改进。计划在2010年完成WSR-88D雷达的双线偏振雷达改造。

加拿大自1998起的6年时间内完成了“国家多普勒雷达计划”,主要沿人口密集、灾害性天气频发并造成巨大灾害的海岸线布设了30部多普勒雷达,其中11部多普勒雷达是完全新建的,其余19部则是原有的常规雷达翻建成具有多普勒雷达功能的。雷达的有效探测距离为240 km,多普勒模式下为120 km。目前加拿大正在进行将多普勒模式下的作用距离加大到240 km的技术开发。雷达网的建成,使得对龙卷的预报从几乎不可能到提前15~20 min,对风暴位置和雨雪量级做出了比以前更为准确的预报。欧洲国家由于国土紧密相连,采取联合方式建立雷达网,使雷达探测资料在天气预报中得到充分利用。从1970年代后期,欧盟COST-72(Cooperative in Science and Technology Project 72)项目开始实施并持续了6年,至1980年代中后期的COST-76项目,欧洲形成了世界上两大雷达网之一,共有130多部雷达,其中一半具有多普勒雷达能力,并建立了风廓线雷达网,

进行欧洲大面积降水监测和风廓线观测。COST717项目的主要目的是对先进的雷达信息进行评估、演示和记录,如将径向速度、垂直风廓线、反射率、估算出的降水等作为参数,对数值天气预报和水文模式进行评估。

二、相控阵天气雷达

相控阵多普勒天气雷达,主要优势是可以提高获取资料的时间分辨率、进一步提高探测能力。一般雷达均基于机械扫描,这种扫描方法一般在6 min内完成14层的扫描,对于快速变化的中小尺度天气过程如冰雹、龙卷、微下击暴流、风切变等过程,用这种传统的方法很难同时满足高时空分辨探测天气过程三维结构和发展演变的需求。

相控阵天气雷达快速而精确地转换波束的能力使该雷达能够在1 min内完成全空域的扫描,同时获取大量的气象信息。所采用的阵列天线是由大量相同的辐射单元组成的孔径,每个单元在相位和幅度上是控制的,能得到精确可预测的辐射方向图和波束指向。若干个固态发射机通过功分网络将能量分配到每个天线单元,移相网络又控制每个天线单元的初相位,通过大量的天线单元将能量辐射出去并在空间进行功率合成。接收时,各天线单元将接收到的目标回波信号进行相位相加进入接收机。回波信号经接收机放大、滤波后进入信号处理机进行多种模式的信号处理。对信号处理机提取的气象数据进行二次处理得到气象预报需要的气象要素资料。相控阵天气雷达具有常规天气雷达所不具有的许多优点:可以实现跳跃式电扫描波束和天线方向图形状的自适应控制,从而实现多功能探测能力;可充分地将雷达时间和能量资源应用于微弱目标探测能力、目标数据率、分辨率、精度等等技术性能上,因而具有能对付多目标、机动性强、反应时间短、功能多、数据率高、抗干扰能力强、可靠性高等特点。相控阵雷达跟踪孤立的目标是成熟的,但相控阵天气雷达对分布体目标的强度场和速度场的探测能力有待研究;即使是技术上可行,相控阵天气雷达的阵面天线造价十分昂贵,近期在发展中国家难以实现业务化和组网。

三、数字信号处理的应用

雷达信号处理则是为完成雷达数字信号检测和信息提取功能所采取的实施手段。物体的反射回波是微弱的高频信号,经过变频、放大和滤波等处理变成具有一定强度的模拟信号(时间上连续,幅度上可为任意实数值)。数字处理须采用模拟-数字转换器,把模拟信号转换成为数字信号(时间上离散,幅度上分层),然后进行各种运算和处理。早期的雷达信号处理,几乎全部是模拟的。50年代出现利用计算机进行信号处理的雷达系统。这是雷达数字信号处理的开端,功能还仅限于自动检测。

同模拟信号处理相比,采用数字信号处理的优点是:①把许多功能综合设计在一部处理机中,可以根据外来指令或预先编好的程序灵活地选择和组合使用。②精度仅与字长有关,不像模拟处理那样,性能与使用人员的调整有关,因此性能稳定可靠。③有利于高速大规模集成电路的应用,从而可使信号处理机的重量减轻和体积缩小。同其他领域的数字信号处理相比,雷达数字信号处理的特点是信号带宽大,因而采样率高,并且实时输出。因此,单位时间内的处理量(或称吞吐率、解题率)极大。

数字转换器把模拟视频信号转换成数字信号,从原理上可分为三个步骤,即采样、保持和分层。在脉冲雷达中,数字信号处理可划分为周期内处理和隔周期处理两大部分。周期内处理是指对一个周期之内的回波脉冲进行匹配或最佳滤波处理,使单个脉冲的信-噪比达到最大;隔周期处理是指对多个周期中回波脉冲串的复包络进行匹配或最佳滤波处理,使整个脉冲串中某时刻的信-噪比达到最大。对于周期内处理,采样周期应小于或等于测时延(距离)的分辨单元。对于隔周期处理,采样周期可以长达一个重复周期。

数字信号处理可分为四类,即线性非时变、线性时变、非线性非时变和非线性时变。在理论上最容易解决的是线性非时变型的处理。这一类型的模拟处理用线性常系数微分方程描述,从而可以用傅里叶级数或傅里叶变换求解。同样,这一类型的数字处理可以采用线性常系数差分方程描述,从而可以用Z变换或离散傅里叶变换求解。

采用状态变量法解决线性时变型数字处理的分析问题效果较好。

这种方法尤其适用于利用电子计算机进行仿真分析。关于含有非线性性质的数字处理,只能对特定问题进行计算机仿真计算,而不能应用叠加原理。

信号处理方法有两种,一种是信号依次进入而形成信号流,另一种是执行完一条指令再执行下一条指令,形成指令流。雷达中的数字信号处理机可采用这两种方法中的任一种,也可以兼用两种方法。一般来说,采样速度高而功能较简单者宜用前者;采样速度较低而功能复杂者则宜采用后者。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- fenyunshixun.cn 版权所有 湘ICP备2023022495号-9

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务