ORIGINALPAPER
ExperimentalValidationofModifiedBarton’sModelforRockFractures
PooyanAsadollahi•MarcoC.A.InvernizziSimoneAddotto•FulvioTonon
•
Received:13September2009/Accepted:1February2010/Publishedonline:25February2010ÓSpringer-Verlag2010
AbstractAmongtheconstitutivemodelsforrockfrac-turesdevelopedovertheyears,Barton’sempiricalmodelhasbeenwidelyused.AlthoughBarton’sfailurecriterionpredictspeakshearstrengthofrockfractureswithacceptableprecision,ithassomelimitationsinestimatingthepeaksheardisplacement,post-peakshearstrength,dilation,andsurfacedegradation.ThefirstauthormodifiedBarton’soriginalmodelinordertoaddresstheselimita-tions.Inthisstudy,themodifiedBarton’smodel(thepeaksheardisplacement,theshearstress–displacementcurve,andthedilationdisplacement)isvalidatedbyconductingaseriesofdirectsheartests.
KeywordsRockfractureconstitutivemodelÁ
Barton’sempiricalmodelÁShearstrengthÁDilatancyÁShearstiffness
1Introduction
Innear-surfacegeotechnicalworks,themechanicalbehaviorofrockmassesisinfluencedmorebythefracturesthanbytheintactrock.Severalempiricalandtheoretical
P.Asadollahi(&)ÁF.TononDepartmentofCivilEngineering,UniversityofTexas,
Austin,TX78712-0280,USA
e-mail:pasadollahi@gzconsultants.com
M.C.A.InvernizziÁS.Addotto
Land,Environment,andGeo-EngineeringDepartment,TurinPolytechnic,10192Turin,Italy
constitutivemodels(AmadeiandSaeb1990;BartonandChoubey1977;DesaiandFishman1991;Foxetal.1998;Gensetal.1990;Goodman1976;Huangetal.1993;Jing1990;Jingetal.1993;Kanaetal.1996;LadanyiandArchambault1969;Patton1966;Plesha1987;Qiuetal.1993;Saeb1990;Wangetal.2003;Wibowo1994;Wibowoetal.1993)weredevelopedtosimulatethebehaviorofrockfractures.
Patton(1966)proposedbilinearmodelsofsaw-toothfractures.Plesha(1987)idealizedPatton’ssaw-toothtypeasperitiesanddevelopedaconstitutivemodelbasedontheclassicaltheoryofplasticity.Huangetal.(1993)verifiedPlesha’sexponentialdegradationlawthroughaseriesofexperimentsforfractureshavingsaw-toothtypeasperities.Qiuetal.(1993)revisedPlesha’smodelbyidealizingthesinusoidalasperities,butitwaslesspracticalduetothecomplexityofconstitutiveequation.Saeb(1990)modifiedthefailurecriterionofLadanyiandArchambault(1969).Gensetal.(1990)proposedanelastoplasticconstitutivelawfordescribingthethree-dimensionalmechanicalbehaviorofrockfractures.DesaiandFishman(1991)proposedaconstitutivemodelbasedonthetheoryofplasticityforcharacterizingthemechanicalresponseofsimulatedfracturesundermonotonicloading,unloadingandreverseloading.Wangetal.(2003)proposedanellipticyieldfunctionbasedonassociatedflowruletopredictthebehaviorofrockinterfacesandfractures.Usingtheresultsofaseriesofexperimentalworkonsandstone,Leichnitz(1985)developedaconstitutivelawforrockfracturesthatalsoallowsconsiderationforthenon-linear-ityofthematerialbehavior.Kanaetal.(1996)suggestedtheinterlock-frictionmodelfordynamicshearresponse;theimportanceofsecondorderasperitiesonthedynamicshearbehaviorwasexplainedbyFoxetal.(1998).Sam-adhiyaetal.(2008)introducedageneralizedformulation
123
598ofathree-dimensionaljoint/interfaceelementtoaccountfordilatancy,roughness,andundulatingsurfaceofdiscontinuities.
DegradationofjointasperitieswasinvestigatedbyPlesha(1987),Zubelewiczetal.(1987)Leeetal.(2001),Homandetal.(1999,2001),LadanyiandArchambault(1969),Saeb(1990),HutsonandDowding(1990),Hutson(1987),andHuangetal.(1993).Inaddition,thepredictionofthedilatancyphenomenonofregularorirregularfrac-turessubjectedtodirectshearloadinghasbeenaddressedbynumerousresearcherssuchasPatton(1966),LadanyiandArchambault(1969),Jaeger(1971),Barton(1973;1976),Saeb(1990),Homandetal.(1999;2001),Leichnitz(1985),etc.
Amongthesemodels,Barton’sempiricalmodel(Barton1973,1976;BartonandChoubey1977)haswidelybeenused(GrasselliandEgger2003)becauseitiseasytoapplyandincludesseveralimportantfactorsoffractureproperties(Bandisetal.1983).AlthoughBarton’sfail-urecriterionpredictsthepeakshearstrengthofrockfrac-tureswithacceptableprecision,itshowslimitationsinestimatingthepeaksheardisplacement,post-peakshearstrength,dilation,andsurfacedegradation(Asadollahi2009).
Asadollahi(2009)modifiedtheoriginalBarton’smodeltoaddressitslimitations.Hebuiltandanalyzedadatabaseoftheresultsofdirectsheartestsavailableinthelitera-tures.Thedatabasecontained366directsheartestrecordsandwascalledMonotonicDirectShearTest,MDST,database(Asadollahi2009).TheabilityofBarton’smodeltopredictpeaksheardisplacement,dilation,andstress–displacementcurvewasinvestigatedandmodificationswereproposedtoimproveit.
ThepurposeofthispaperistoexperimentallyvalidatethemodifiedBarton’smodelproposedbyAsadollahi(2009).Section2describestheoriginalBarton’smodel,itslimitations,andmodifications(Asadollahi2009).Section3introducesthemethodologyandtestingequipments.Theresultsoftheexperimentalstudyarepresentedandana-lyzedinSect.4followedbysummaryandconclusionsinSect.5.
2Barton’sOriginalModelVersustheModifiedModelBarton(1973)suggestedthefollowingempiricallawfortheshearstrengths¼rofrocklogfractures:
JCS
ntanJRC10rþ/rð1Þ
nwherernisthenormalstressacrossthefracture;/ristheresidualfrictionangle,whichisequaltobasefriction
123
P.Asadollahietal.
angle,/b,forunweatheredfracturesurfaces;JRCisthejointroughnesscoefficient;andJCSisthejointcompres-sivestrength.2.1ShearStiffness
Thesheardisplacement,dpeak,requiredtoreachthepeakshearstrengthdeterminesthesecantstiffnessoffracturesinshear.Thisisextremelyimportantinputdatainthefiniteelement(Barton1972)anddistinctelement(Asadollahi2004)analyses.Secantpeakshearstiffness,Ks,canbeobtainedasKs¼speak=dpeak:
Barton(1982)suggestedthefollowingempiricalequa-tionforthepeaksheardisplacementofrockfractures:
dpeak1JRC
0:33
L
¼500L;ð2ÞwhereLislengthofjointsample(inmeters).
AlthoughBandisetal.(1983)foundthataconstantnormalpeakdisplacementmodel(John1970)isnotalwaysrealistic,Eq.2isindependentofnormalstress.Thenon-linearvariationofshearstiffnesswithnormalstressisduetonon-linearvariationofspeakwithrnandthesmallincreaseofdpeakwithrn(Bandisetal.1983).Inaddition,Wibowoetal.(1993)andWibowo(1994)demonstratedthatneithertheconstantstiffnessmodelnortheconstantdisplacementmodel,bythemselves,fittheobservedshearbehaviorofrockfractures.ThepeaksheardisplacementmeasuredintheexperimentsbyWibowoetal.(1993)wasfoundtoincreasewiththenormalloadorstress.
Moreover,Eq.2predictszeropeaksheardisplacementforsawedfractures,whichisnotconsistentwithexperi-mentalobservations.TheMDSTdatabase(Asadollahi2009)contained19datapointswithzeroJRCandpeaksheardisplacementrangingbetween0.05and2.71mm.Inaddition,inthisstudy,45directsheartestswereperformedonsawedfracturesoffourdifferentrocktypes(underdifferentnormalstresses).Thepeaksheardisplacementofsawedfracturerangedbetween0.3and2.2mm(seeSect.4.2fordetailedresults).
Inordertoovercometheselimitations,Asadollahi(2009)performedacorrelationanalysesonMDSTdata-basetofindthebestempiricalequationforthepeaksheardisplacementofrockfractures.AlthoughBartonfoundthatthepeaksheardisplacementincreaseswithJRC,theoppositewasfoundincorrelationanalysesofMDSTdatabase.TheregressionanalysisfoundthatcosinefunctiondescribestherelationshipbetweenJRCandpeaksheardisplacementthebest.Consequently,thefollowingempiricalequationwasintroduced(Asadollahi2009):
ExperimentalValidationofModifiedBarton’sModelforRockFractures599
d¼0:0077ÂL0:45rn
0:34JCSpeak
JCS
cosJRClog10
rnð3Þ
2.2Stress–DisplacementCurve
Barton(1982)showedthatthemobilized(pre-orpost-peak)shearstrengthcanbeexpressedusingtheconceptof
roughnessmobilization,JRCmobilized,inEq.1.TheratioJRCmobilized=JRCpeakcanbeestimatedfromtheratiod/dpeakusingthevaluesgiveninTable1.Bartonassumedthat,atasheardisplacementequalto100dpeak,themobilizedJRCbecomeszero.Itseemstobejustanapproximationfortheendofthecurve(Asadollahi2009).Moreover,evenafterthisamountofdisplacement,thefracturesurfaceisnotthesameasinsawedfractures(JRCmobilized=0).
Inordertopredictthepre-peakstress–displacementcurve,Asadollahi(2009)performedcorrelationanalysesofMDSTdatabaseandintroducedTable2,whichgivestheratioofJRCmobilized=JRCpeakand/mobilized=/basefordif-ferentmagnitudesofd/dpeak.Inaddition,heproposedthefollowingequationtopredictthepost-peakmagnitudeofJRCmobilized=JRCpeakfromd=dpeak:
JRCmobilizeddpeak0:381JRC¼d;ð4Þ
peakthisempiricalequationwasobtainedbycorrelationanal-ysesandfittedtheMDSTdatabasethebest.2.3Dilatancy
Barton(1982)indicatedthatdilationbeginswhenJRCmobilized=0andmobilizedtangentdilationangle,dt,canbeobtainedfromthefollowingdð1=MÞJRCrelationship:
JCS
t¼mobilizedlog10r;ð5Þ
n
Table1Recommendedmodelforshearstress–displacement(Barton1982)
Non-planarfractures
Planarfractures(JRCB5)
JRCmobilizedJRCmobilizeddd
peakJRCpeak
dd
peakJRCpeak
0-/r/i0-/r/i0.300.300.60.750.60.751.01.01.00.952.00.852.01.04.00.704.00.910.00.5010.00.725.00.4025.00.5100
0
100
0
Table2Pre-peakmobilizationofthebasefrictionangleandJRC
/mobilizedJRCmobilizedddpeak
/base
JRCpeak
0.00.00.00.250.750.00.500.900.670.600.920.831.0
1.0
1.0
whereMisadamagecoefficientthattakesvaluesof1or2forshearingunderloworhighnormalstress,respectively(OlssonandBarton2001).
Almosthalfofthedirectsheartestsfoundintheliter-aturebyAsadollahi(2009)displayednegativedilation(contraction),whichwasneglectedbyBarton’smodel.Mostofthetime(notalways),theinitialcontractionisduetothemismatching.Sincethenegativedilationcanbeseeninmostofthedirectsheartestsandconsideringthatisconservativeinthestabilityanalysesofrockblocks(e.g.,intunneling),itisrecommendedthatcontractionbeconsidered.
Ontheotherhand,Barton(1982)proposedEq.6forthetangentdilationangleateachsheardisplacementandTable1formobilizedJRC.BasedonTable1,JRCmobilizedisnegativeuptod/dpeak=0.3.Therefore,thetangentdilationangleshouldbenegativeuptod/dpeak=0.3.Inaddition,JRCmobilizediszeroatd/dpeak=0.3andthenithasapositivevalue.Asaresult,dilationdisplacementshoulddecreaseuptod/dpeak=0.3andthenincrease.Thus,d/dpeak=0.3shouldcorrespondtotheminimumdilationdisplacement,notthepointatwhichthefracturestartstodilate.Consequently,Eq.6isinconsistentwithTable1.Inordertoaddresstheabove-mentionedweaknessandinconsistency,Asadollahi(2009)analyzedMDSTdatabaseandfoundthat:•Atdh¼0:5dpeak;theaveragemagnitudesofdvisclosetozero.•
Atdh¼dpeak;dilation
dcanbedescribedthebestasv¼13tanJRClog10JCS
rn
:Thus,heproposedthefollowingempiricalquadraticequationforthedilationdisplacement,dv,ateachpre-peaksheardisplacement,dv1dhBdpeak:
JCSdh
2dd¼tanJRClogh
peak310rdÀ1:
npeakdpeak
ð6Þ
Inaddition,fromananalyticalpointofview,thetangent
dilationangleateach
sheardisplacement(Eq.5)canbe
describedasdddvpeak¼tanJRCmobilizedlogd
d10JCSrn
:dvpeak
123
600UsingEq.4topredictJRCmobilized,thefollowinginte-grationwasintroducedforthepost-peakdilationdis-placementatd(dh
peak
¼l(Asadollahi2009):dZl dv¼dpeak
peak0:381tanJRCJCS
!
peakdlogh
10rnÂd1dh
)dþðdpeakvÞpeak
ð7Þ2.4ValidityDomainsoftheModifiedModel
MDSTdatabasecontained366datapointsofdirectsheartestsinwhichthemagnitudesofJRCrangedbetween0and20withanormaldistribution.Therefore,themodi-fiedmodel(Eqs.3,4,6,and7)isvalidforallvaluesofJRC.
Inaddition,inMDSTdatabase,thern/JCSratiorangesbetween0.001and0.1.Consequently,althoughthisrangecoversalmostallstressesthatonemaybefacedinapracticalrockengineeringproblem,itcanbeconsideredasavaliditydomainofthemodifiedmodel.
Finally,MDSTdatabasecontainednocasewithd[15dpeak.AlthoughAsadollahi(2009)demonstratedthatEq.4worksatleastaswellasBarton’stable(Table1)ford[15dpeak,itisrecommendedtouseEqs.4and7withcautionatlargesheardisplacements.
3MethodologyandTestingEquipment
Thepurposeofthisexperimentalstudywastovalidatethe
newlydevelopedmodeltopredicttheshearbehaviorofrockfractures(Eqs.3,4,6,and7).Inordertovalidatethemodelforallrocktypesandfracturecharacteristics,areasonablerangeofallparametersthatmayaffecttheshearbehaviorofthefracturesshouldbecoveredintheexperi-mentalstudy.However,coveringallrangesofallparam-etersisnotfeasibleduetothelimitationsintime,funding,andavailableequipment.
Inordertovalidatethemodelindependentofrocktypeandrockhardness,theexperimentalstudywasperformedonfourdifferentrocktypes:twoweakrocks,includingweaklimestone(calledLimestone1)andredsandstone,andtwohardrocks,includinggraniteandmetamorphiclimestone(calledLimestone2).3.1UniaxialCompressiveStrength
ToevaluatetheUniaxialCompressiveStrength(UCS)oftheintactrocks,threedifferentkindsoftestswerecarriedout:theSchmidtHammertest,thepointloadtest(PLT)andtheUCStestwithstress–straincurve.
123
P.Asadollahietal.
TheSchmidthammermeasuresthereboundofaspringloadedmassimpactingagainstthesurfaceoftherock(orconcrete),AS5873andC805.TheL-hammerusedinthisexperimentalstudy(impactenergy=0.075mkg)whichissuitableformeasuringUCSvaluesdowntoabout20MPaanduptoatleast300MPa.TheSchmidthammerreboundnumberisanarbitraryscalerangingfrom10to100.Thehigherreboundgivesthehighercompressivestrengthoftherock.Inthisstudy,thefollowingempiricalequationoriginallysuggestedbyMiller(1965)andadoptedlaterbyBartonandChoubey(1977)andISRM(1978)isusedtocorrelateUCSandreboundnumber,R:log10ðUCSÞ¼0:0088cRþ1:01;
ð8Þ
wherecisthedrydensityofrock(kN/m3)andtheunitofUCSisMPa.
Foreachrocktype,severalspecimenswerepreparedbyeitherofthefollowingmethods:(1)cutting59592cmpiecesusingalapidaryslabsaw;(2)coring(5-cmdiame-ter)specimensusingcoredrillpress‘‘SupermaxHRD-700H’’.AftertakingSchmidthammertests,PLTswereperformedoneachspecimenemployingPLTmachineGCTS8LT100.
BasedonISRMSuggestedMethodsforDeterminingPointLoadStrength(ISRM1985),theUCScanbecal-culatedfromthePLT.Thepointloadindexisdefinedasfollows:IPðsÞ¼
D2;ð9Þ
e
whereDeistheequivalentcorediameter.Forthenon-circularcrosssectionitisequaltoqffiffiffifficaseof
4pA
;inwhichAistheminimumcross-sectionalareaofaplanetroughthespecimenandtheplatencontactpoints.
Thevaluesofthepointloadindex,Is,shouldbemodi-fiedfordiametercorrections:IðsÞ50¼FÂIðsÞ;ð10ÞF¼ðDe=50Þ0:45;
ð11Þ
inwhichDehastheunitofmm.Twolowestandtwohighestvaluesofpointloadindiceswereremovedfromthedatasetandtheremainingvalueswereaveraged.TheISRMsuggestedmethodfordeterminingpointloadstrengthproposesthattheUCSis20–25timespointloadindex.
Theuniaxialcompressiontestwithstress–straincurvemeasurestheuniaxialorunconfinedcompressivestrength,Young’smodulus,andPoissonratiooftherockmaterial(BradyandBrown2004).Foreachrocktype(exceptforLimestone1),threesampleswerecoredusingdrillpress‘‘SupermaxHRD-700H’’,trimmed,andgroundemployingspecimengrinder.Aservo-hydraulictestingmachine,
ExperimentalValidationofModifiedBarton’sModelforRockFractures601
designedforuniaxial/triaxialtests,wasusedforperforminguniaxialcompressiontests.UCStestsonLimestone1werenotperformedbecauseoflackofrockmaterial.AttemptstofindexactlythesameLimestonewereunsuccessful.3.2JointCompressiveStrength(JCS)
TheJCSatlowstresslevelsisequaltotheunconfinedcompressionstrength,rc,oftheintactrockifthefractureisunweathered,butmayreducetoapproximatelyrc/4forweatheredfractures(Barton1971).TheSchmidthammercanbeemployedtomeasuretheJCSvaluesofweatheredrockfractures[Miller’s(1965)method].
Forthecaseofartificialsawedfractures,thefractureisunweatheredandundamagedandthusJCSshouldbeequaltoUCS.However,theprocessofmakingartificialroughfracture(shearingtheintactrockorbreakingbyhammer)mayinducemicro-fractures,whichreducetheJCS.InordertoobtainanestimationoftheratioofJCStoUCSforthecaseofroughfractures,tenSchmidthammertestswereperformedonbothsawedandroughfracturesofeachrocktype.TheSchmidthammertestsonroughfracturesweredoneafterperformingdirectsheartestandopeningthespecimenring.TheUCSsestimatedusingthereboundvaluesobtainedon(sheared)roughfracturesareequalto60%ofthosepredictedusingthereboundvaluesmeasuredon(intact)sawedfractures.Sincetheprocessofshearingtheroughfracturescausessomeadditionaldamagestothefractureandthusdecreasesitscompressivestrength,itisestimatedthattheratioofJCStoUCSshouldbearound0.8.Therefore,inthefollowing,JCSofroughfracturesobtainedaccordingtotheabove-mentionedprocedureisassumedtobeabout0.8timesUCSofthecorrespondingtointactrock.
3.3DirectShearTest
Severaldirectsheartestswereperformedonartificialsawedandroughfracturesofeachrocktype.Thepurposeofthedirectsheartestsperformedonsawedfractureswastoobtainthebasefrictionanglesandtovalidatethepro-posedmodificationinthecaseofsawed(orplanar)frac-tures(Eq.3forJRC=0).Ontheotherhand,thedirectsheartestsperformedonroughfractureswerecarriedouttovalidatethemodificationmadeonBarton’smodelregard-ingthepeaksheardisplacement(Eq.4forJRC=0),stress–displacementcurve(Table2;Eq.4),anddilationdisplacement(Eqs.6and7).
InthecaseofLimestone1,alapidaryslabsawwasusedtocut8cmsamples.However,thedrillpresswasemployedtocore5-cmdiametersamplesfromthesand-stone,thegranite,andLimestone2.Wheneverasawedfracturewasrequired,thesampleswerecutintohalfwiththeslabsaw.
Inthecaseofweakrocks(Limestone1andthesand-stone),artificialroughfracturesweremadebyshearingintactrocksampleunder1MPanormalstressuptofailureandreturningtheshearactuatortotheoriginalpositionafterremovingthenormalstress.However,inthecaseofhardrocks(graniteandLimestone2),artificialroughfracturesweremadebybreakingthesamplesinhalfbyahammer.Foreachdirectsheartest,therocksamplewasinsertedinthespecimenringandfixedusingAnchoringandPatchingCementmanufacturedbyRockiteasencapsulat-ingmaterial.
GeotechnicalConsultingandTestingSystems(GCTS)servo-hydraulictestingmachine(RDS-300)wasemployedforthedirectsheartests(Fig.1).Themachineissuppliedwithoneshearboxmadeupofanupperandalowerpart.Theupperpartcanbemovedverticallyandthelowerpartcanbemovedhorizontally.Twoactuators,oneactingverticallyandoneactinghorizontally,areusedtoapplytheforcesinthetwodirections(degreesoffreedoms).Twolinearrailbearingsareusedforguidanceofthelowerboxinordertohaveacontrolledlinearmovement.
Theservo-hydraulictestingmachineiscomposedofa500kNcompressionframe,adirectshearapparatus,andelectro-hydraulicshearandnormalloadactuatorswith300and500kNloadcapacity,respectively.Themaximumstrokeis100mmintheverticaldirectionand±50mminthesheardirection.
Fourplatesaroundthesphericalseatingforthenormalactionpreventrotationoftheupperhalfoftheshearbox(Fig.1a,d).ItshouldbementionedthatBoulon(1995)Jafarietal.2003;Jafarietal.2004)alsopreventedthisrotationusingtwobrushlessservo-motors.Thetwowallsofajointcanmovesymmetrically,sonorelativerotationoccursduringtheshearingdisplacementandthenormalforceremainscenteredontheactivepartofthejointatanygiventime.
Inthesheartest,thenormalandsheardisplacementsweremeasuredbymeansoflinearvariabledifferentialtransducers(LVDTs).TheverticaldisplacementbetweentheshearboxismeasuredbyfourLVDTs,positionedinasquarepatternaroundthespecimen,oneineachcorner.EachoftheLVDTshasameasurementrangeof12mm.TheaveragevalueofthesefourLVDTsisusedtorepresentthevertical(normal)displacementpresentedinthe‘‘Results’’.Therelativedisplacementbetweentheshearboxinthehorizontal(shear)directionismeasuredbyoneLVDT,whichhasa100mmrange.ThesensitivitiesoftheLVDTsare0.025mmforsheardisplacementand0.0025mmfornormaldisplacement.
123
602P.Asadollahietal.
4ResultsandDiscussion4.1UCSandJCS
InordertoobtaintheUCSofintactrocks,threedifferentkindsoftestswereperformed:Schmidthammertests,PLTs,andUCStestswithstress–straincurve.TheresultsofthesetestsaresummarizedinTable3.TheUCSvaluesevaluatedusingSchmidthammertests,PLTtests,andUCStestswithstress–straincurveareconsistentwitheachother.TheadoptedmagnitudesofUCSandJCSfordifferentrocktypesarealsopresentedinTable3.4.2DirectShearTestsonSawedFractures
Directsheartestswereperformedontwotofoursamplesofeachrocktypeunderdifferentnormalstressesrangingbetween0.2and6MPa.Table4presentsthepeakshearstrengthsandpeaksheardisplacementsobtainedinthese
Fig.1Servo-hydraulictestingmachine(GCTSdirectsheartestsystem,RDS-300)
teststogetherwiththeappliednormalstressesandlengthofthesamples.
Foreachrocktype,shearstrengthversusnormalstresscurvewasdrawnforalldirectsheartestsperformedonsawedfractures.SinceJRCisequaltozero,theinclinationofthetrendlinepassedthroughtheoriginwouldbeequaltotan(/b).ThebasefrictionangleofeachrocktypeandR2ofthetrendlinepassedthroughdatapointsaregiveninTable4.Barton’sempiricalequation(Eq.2)suggestszeropeaksheardisplacementforsawedfractures.However,As-adollahi(2009)introducedEq.3forpeaksheardisplace-mentwhichworksforallrangesofJRC,evensawedfractures.
Figure2aandTable5showtheabilityofEq.3topredictthepeaksheardisplacementofsawedfractures.ExceptforLimestone2(veryhardrock),Eq.3worksverywell.Inallcases,predictionsobtainedwithEq.3aremuchbetterthanthezerovaluegivenbyBarton’sequation(Eq.2)anddepictedinFig.2b.
123
ExperimentalValidationofModifiedBarton’sModelforRockFractures603
Table3ResultsofSchmidthammer,PointLoadTests(PLT),andUCStestsaswellasfinaladoptedvaluesforUCSandJCSfordifferentrocktypes
Rocktype
SchmidthammertestNumberoftests
Limestone1
15
Averagereboundvalue18.6
Unitweight,c(kN/m3)25.0
UCS(MPa)26
PointLoadTest(PLT)TestNo.12345678Is(50),Height(mm)18.1418.4418.1120.4318.20.7920.7220.17
P(N)1,5702,4101,9201,3101,7602,1401,9101,300
De(mm)30.4233.1533.4635.5230.7634.8134.9435.07
Is(50)(MPa)1.361.821.430.1.491.501.330.901.3430
3,04,0204,3904,1503,1502,9303,4103,7802,750
34.8835.7639.0335.9932.3537.2734.6037.34.07
2.722.702.582.762.471.852.412.321.992.4253
7,1706,2907,04,1005,8807,0305,04,4204,6207,370
42.4033.5035.1936.1834.5835.5633.9736.4933.90.98
3.704.685.442.714.174.774.292.883.374.014.0088
3,8404,6603,7702,9205,8006,9303,5605,2405,840
39.0243.0829.6935.4337.3145.4438.0733.7135.54
2.262.353.381.993.653.222.173.863.962.8663
FinaladoptedmagnitudesforUCSandJCSUCS(MPa):155JCSsawedJCSroughfracturesfracturesUCStestTestno.
Height(mm)
Diameter(mm)
UCS(MPa)
FinaladoptedmagnitudesforUCSandJCSUCS(MPa):28JCSsawedJCSroughfracturesfractures(MPa):28(MPa):22.5
Average.(MPa)
UCS(MPa)
Sandstone
10
27.0
25.5
41
1234567Is(50),18.7019.7323.5520.0716.1421.4518.4722.1117.95
123
110.06105.01111.53
51.0251.0051.91
43.944.234.841
AverageUCS
FinaladoptedmagnitudesforUCSandJCSUCS(MPa):41JCSsawedJCSroughfracturesfractures(MPa):41(MPa):33
Average.(MPa)
UCS(MPa)
Granite
20
48.4
26.5
138
123456710Is(50),27.6217.2719.0820.1718.4119.4917.7320.517.7825.99
123
105.5294.4996.26
51.2351.1951.34
108.1130.2141.5127
AverageUCS
FinaladoptedmagnitudesforUCSandJCSUCS(MPa):127JCSsawedJCSroughfracturesfractures(MPa):127(MPa):101
Average.(MPa)
UCS(MPa)
Limestone2
10
49.6
27.0
155
1234567Is(50),23.6928.8113.5319.3121.8631.6522.4117.4419.42
123
104.7595.16102.20
50.0650.5850.53
173.0188.5157.8173
AverageUCS
(MPa):155(MPa):124
Average.(MPa)
UCS(MPa)
123
604
Table4Resultsofdirectsheartestsperformedonsawedjoints
123
P.Asadollahietal.
Rocktype
Specimennumber
Lrns
dPR2lineartrendline/b(°)
(mm)
(MPa)
(MPa)
(mm)
passedthroughshearstrengthversusnormalstresscurve(%)Limestone1195.031.00.7490.9699.4
35.7
5.03.5182.202
80.96
0.50.3260.421.00.7261.102.01.5401.704.0
3.1001.253100.05.03.5001.803.02.1001.203.02.1201.103.0
2.0981.35486.700.40.3600.550.60.4800.400.8
0.6500.55Sandstone150.900.30.3580.4298.331.4
0.50.3920.500.80.6560.581.00.7260.631.50.8840.72251.10
0.20.2240.360.40.3670.460.60.4200.531.20.7850.672.01.4000.794.02.5031.016.0
3.4811.15Granite151.150.50.1520.3094.724.9
1.00.2990.601.50.4790.902.00.7930.524.0
1.7920.80251.150.80.2460.651.80.6350.552.51.3500.773.51.5750.5.5
2.3600.90Limestone2151.030.20.3800.5765.339.2
0.40.4450.600.60.5820.950.80.7120.651.2
0.10.69250.900.50.5680.920.70.5920.780.90.7220.951.10.8320.851.3
0.985
1.06
ExperimentalValidationofModifiedBarton’sModelforRockFracturesFig.2Predictedversusmeasuredpeaksheardisplacementforsawedfractures605
(a) Modified Barton’s model: Peak shear displacement (b) Barton’s original model: Peak shear displacement predicted using Equation (3) predicted using Equation (2) Table5AbilityofEq.3inpredicatingthepeaksheardisplacementofsawedfracturesRocktypeandadoptedmagnitudeofJCSLimestone1(JCS=28MPa)Sandstone(JCS=41MPa)Granite(JCS=127MPa)
Limestone2(JCS=155MPa)Fig.3ComparisonbetweenmeasuredpeaksheardisplacementandtheirpredictedvaluesusingEqs.2and3forthecaseofsawedfractures(JRC=0)predicted
ÞAverageÆSTDðdmeasured
dpredicted
ðdmeasuredÞmax
dpredicted
ðdmeasuredÞmin
d1.05
0.790.780.41±±±±0.330.250.190.081.731.461.060.560.600.560.500.31
(a)(b)(c)(d)(e)1.51.00.50.0(f) Specimen; Specimen 2 peak (mm)n (kPa)0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (g)(h)(i)(j)123
606P.Asadollahietal.
Figure3showstheabilityofEq.3inconsideringtheeffectofnormalstressonthepeaksheardisplacement(comparedtoEq.2).
AlthoughforsawedfracturesBarton’soriginalmodeldoesnotsuggestastress–displacementcurve,themodifiedmodelsuggestedTable2toquantifythemobilizationofbasefrictionangle.Figure4comparesthemeasuredratio/mobilized//baseateachsheardisplacementwiththepre-dictedvaluesusingTable2.Themeasuredvaluesof/baseand/mobilizedareobtainedusingthefollowingequations:
speak
/base¼arctan;
rn
s;/mobilized¼arctanrn
ð12Þð13Þ
wherernisthenormalstress;speakisthepeakshearstrength;andsistheshearstressatagivensheardis-placement.ItcanbeseenthatTable2worksbetterthanBarton’soriginalmodel.
Fig.4Comparisonbetweenmeasuredratioof/mobilizedateachsheardisplacement/baseandpredictedonesusingTable1andBarton’smodel(sawedfractures)123
2(a)2(c)2(b)2(d)ExperimentalValidationofModifiedBarton’sModelforRockFractures607
4.3DirectShearTestsonRoughFractures
Directsheartestswereperformedonthreesamplesofeachrocktypeunderdifferentnormalstressesrangingbetween0.5and2MPa.Table6summarizestheresultsofdirectsheartestsconductedontheroughfracturesofdifferentrocktypes.
4.3.1PredictionofShearDisplacementatFailureForeachsample,JRCwasback-calculatedbasedonthemeasuredvaluesofotherparameters(JCS,basefrictionangle,normalstress,andshearstrength).Table7summa-rizesthecalculationsofJRCandpeaksheardisplacements
bothusingBarton’sequation(Eq.2)andthemodifiedempiricalequation(Eq.3).
Figure5andTable8compareEqs.3and4witheachotherbygivingtheirratioofpredictedtothemeasured
dpredicted
peaksheardisplacement,dmeasured;forroughfracturesofdifferentrocktypes.Fordifferentrocktypes,thefol-lowingconclusionscanbedrawnfromTables7and8andFig.5:
•Equation3worksbetterthanEq.2inpredictingpeaksheardisplacementofrockfracturesofLimestone1,because:–
predicted
AlthoughthevalueofðdmeasuredÞAveragecalculatedusingEq.2isclosertoone,thecorrelationfactor,predictedpredictedðdmeasuredÞSTD=ðdmeasuredÞAverage;issmallerinthecaseofEq.3(0.94fromEq.3comparedto1.13fromBarton’sequation).
dpredicteddpredicted
ThemagnitudesofðdmeasuredÞmaxandðdmeasuredÞmincalculatedusingEq.3areclosertoone.
dpredicteddpredicted
ThemagnitudesofðdmeasuredÞmaxandðdmeasuredÞmincalculatedusingEq.3areclosertoone.
Forallthreespecimens,Eq.3worksbetterthanBarton’sequation.
d
dd
–
Table6ResultsofdirectsheartestsonroughfracturesRocktypeLimestone1
Specimennumber123
Sandstone
123
Granite
123
Limestone2
123
L(mm)76.976.666.251.0151.0350.4051.151.251.251.150.751.1
rn(MPa)0.51.02.00.51.01.51.01.52.00.51.02.0
sp(MPa)1.081.222.530.821.001.231.562.333.190.921.673.17
dp(mm)0.442.262.782.421.41.361.461.80.920.720.70.73
––
•
•
TheabilityofEqs.3and4inpredictingpeaksheardisplacementsofroughfracturesofthesandstonearealmostthesame.
Barton’sequation(Eq.2)worksbetterthanEq.3inpredictingthepeaksheardisplacementsofroughfracturesofthegraniteandLimestone2.
Ingeneral,itcanbeseeninTables7and8andFig.5thatbothBarton’soriginalandmodifiedmodelsunderes-timatethepeaksheardisplacementofroughfracturesconsideredinthisstudy.However,Barton’smodel
Table7CalculationsofJRCandpeaksheardisplacementofroughfracturesRocktypeandadoptedmagnitudeofJRC
Sampleno.
JRC
Modifiedmodel(Eq.3)dpredicted(mm)
Limestone1(JCS=22.5MPa)
123
Sandstone(JCS=33MPa)
123
Granite(JCS=101MPa)
123
Limestone2(JCS=124MPa)
123
17.110.614.315.08.95.916.217.719.49.19.310.1
0.580.810.960.430.600.860.350.410.450.290.370.47
dpredicteddmeasured
Barton’smodel(Eq.2)dpredicted(mm)0.930.790.800.670.560.660.680.700.730.570.570.59
dpredicteddmeasured
1.320.360.340.180.430.630.240.230.480.400.520.
2.110.350.290.270.400.490.470.390.790.790.810.81
123
608
Fig.5PredictedversusthemeasuredpeaksheardisplacementforroughfracturesLimestone 1 Granite Limestone 2 SandstoneP.Asadollahietal.
(a) Barton’s original model: Peak shear displacement (b) Modified Barton’s model: Peak shear displacement predicted using Equation (2) predicted using Equation (3) Table8ComparisonbetweenBarton’sequation(Eq.2)andEq.3inpredictingpeaksheardisplacementofroughfracturesRocktypeandadoptedmagnitudeofJRCLimestone1(JCS=26.4MPa)Sandstone(JCS=32.8MPa)Granite(JCS=101.3MPa)Limestone2(JCS=138.5MPa)Averageofallrocktypes
PredictedusingEquation3Barton’sequationEquation3Barton’sequationEquation3Barton’sequationEquation3Barton’sequationEquation3Barton’sequation
predicted
ÞAverageÆSTDðdmeasured
d
predicted
ðdmeasuredÞmax
d
predicted
ðdmeasuredÞmin
d
0.67±0.560.92±1.040.41±0.230.39±0.100.32±0.150.55±0.210.53±0.120.80±0.010.48±0.300.66±0.50
1.322.110.630.490.490.790.0.811.322.11
0.350.290.180.280.230.390.400.790.180.28
statisticallyworksalittlebitbetterthanthemodifiedmodel
inpredictingpeaksheardisplacementofroughfracturesinvestigatedinthisresearch,because:••••
predicted
ThevalueofðdmeasuredÞAveragecalculatedusingBarton’sequation(Eq.2)isclosertoone.
ThecorrelationfactorissmallerinthecaseofEq.3(0.63fromEq.3comparedto0.76fromBarton’sequation).
dpredicted
ThemagnitudeofðdmeasuredÞmaxcalculatedusingEq.3isclosertoone.
dpredicted
ThemagnitudeofðdmeasuredÞmincalculatedusingEq.2isclosertoone.
d
directsheartestsonroughfractures.Inaddition,Table9comparesBarton’smodelandthemodifiedmodelaccordingtotheirratioofpredictedtomeasuredratioofs
rforroughfractures.
ItcanbeseeninFig.6andTable9thatbothmodelsworkverywellinpredictingthestress–displacementcurve.Forsheardisplacementssmallerthanabouteighttimesofthepeaksheardisplacement,bothmodelsunderestimatetheshearstressesand,afterthat,bothoverestimatetheshearstresses.Itcanbeconcludedthatthemodifiedmodelisalittlebitbetterthantheoriginalmodelduetothefollowingreasons:•
ss
ThevalueofððrÞpredicted=ðrÞmeasuredÞAverageobtainedusingthemodifiedmodelisclosertoonecomparingtothosecalculatedusingBarton’smodel.
4.3.2PredictionofShearStress-DisplacementCurveFigure6comparesthestress–displacementcurvespre-dictedusingBarton’soriginalmodelandthemodifiedmodelwiththestress–displacementcurvesobtainedfrom
•Thecorrelationfactor,
ssððrÞpredicted=ðrÞmeasuredÞSTDssððrÞpredicted=ðrÞAverageÞAverage;issmaller
inthecaseofthemodifiedmodel.
123
ExperimentalValidationofModifiedBarton’sModelforRockFracturesFig.6ComparisonbetweenBarton’soriginalmodelandthemodifiedmodelinpredictingstress-displacementcurveforroughfractures1.5609
1.5/(a) Limestone 1; Specimen 1 /(b) Limestone 1; Specimen 2 1Experimental results 10.5Modified model Barton's model 0.5Experimental results Modified model Barton's model /000.5 1 1.5 2 2.5P 3 0 0.5 1 1.5 2 2.521.510/P 33 .54 3/(c) Limestone 1; Specimen 3Experimental results Modified model Barton's model /(d) Sandstone; Specimen 1 21Experimental results0.5Modified model Barton's model/0P0/P0 5 10 15 20 25 30 0 1 2 3 4 11.5/(e) Sandstone; Specimen 2 (f) Sandstone; Specimen 3 10.50.5Experimental results Modified model Barton's model Experimental results Modified model Barton's model0/P0 1 2 3 4 5 6 7 8 0/P0 2 4 6 8 10 12 14 21.510.50/(g) Granite; Specimen 1 2/1.51Experimental results Modified model Barton's model (h) Granite; Specimen 2 Experimental resulst 0.5Modified model Barton's model /P0 2 4 6 8 10 12 14 0/P0 1 2 3 4 21.510.5/(i) Granite; Specimen 3 Experimental results Modified model Barton's model 21.510.5/(j) Limestone 2; Specimen 1 Experimental results Modified model Barton's model /0P/0 5 10 15 20 25 0 5 10 15 200P25 21.510.50/(k) Limestone 2; Specimen 2 Experimental results Modified model Barton's model 21.510.5/(l) Limestone 2; Specimen 3 Experimental results Modified model Barton's model /P0 5 10 15 20 25 30 0/P0 5 10 15 20 25 30 123
610P.Asadollahietal.
Table9ComparisonbetweenBarton’soriginalmodelandthemodifiedmodelinpredictingtress-displacementcurveforroughfracturesRockTypeLimestone1SandstoneGraniteLimestone2
Averageofallrocktypes
ConstitutivemodelBarton’smodelModifiedmodelBarton’smodelModifiedmodelBarton’smodelModifiedmodelBarton’smodelModifiedmodelBarton’smodelModifiedmodel
predicted
ÞAverageÆSTDððrsÞrmeasured
ðsÞpredictedððrÞmaxsÞrmeasured
ðsÞpredictedððrÞminsÞrmeasured
ðsÞ1.09±0.381.02±0.321.09±0.421.02±0.411.11±0.821.23±0.871.52±1.011.70±1.351.20±0.711.29±0.88
2.362.072.682.584.194.116.457.046.457.04
0.690.590.740.670.40.460.780.840.590.69
•
ss
ThevalueofððrÞpredicted=ðrÞmeasuredÞmaxobtainedusingthemodifiedmodelissmallerthanthosecalculatedusingBarton’smodel.
Thesenegativedilationsareincludedinthemodifiedmodel.
4.3.3PredictionofNormalDisplacement–Shear
DisplacementCurveFigure7comparesthenormaldisplacement–sheardis-placementcurvespredictedusingBarton’soriginalmodelandthemodifiedmodelwiththenormaldisplacement–sheardisplacementcurvesobtainedfromdirectsheartestsonroughfractures.Inaddition,Table10comparesBarton’smodelandthemodifiedmodelbydisplayingtheratior¼j
ðdvÞpredictedÀðdvÞmeasured
jðdvÞmeasured
5Conclusions
Theexperimentalstudypresentedinthispapervalidated
themodificationsproposedbyAsadollahi(2009)toBar-ton’soriginalmodel.Thefollowingconclusionscanbedrawnbasedontheresultsofourtesting:•
Forsawed(orplanar)fractures,themodifiedmodelworksmuchbetterthantheoriginalBarton’smodel.
BoththemodifiedmodelandBarton’soriginalmodeldisplaysubstantialapproximationsinpredictingthedilatantbehaviorofroughfractures.However,duetothefollowingreasons,itisbelievedthatthemodifiedmodelshouldbeusedforpredictingthedilationbehaviorofrockfractures:Barton’sempiricalequationforpeaksheardisplacementofrockfracturescannotconsidertheeffectofnormalstressontheincreaseofthepeaksheardisplacement.––
Barton’smodelcanpredictdilationdisplacementonlyatthepeaksheardisplacement.
ThemodifiedmodelworksbetterthanBarton’smodelinpredictingstress-displacementcurvesfor
hhighvaluesoftheddratio.peak
Thenegativedilation(orcontraction)wasfoundintheexperimentalstudydocumentedhereandintheliteraturereview.ContractionisnotconsideredinBarton’smodelandthismaycauseoverestimationofthefactorofsafetyinstabilityanalysessuchasthestabilityofrockblocksaroundtunnels.
atthesameshear
•
displacements.
Figure7andTable10showthatbothBarton’smodelandthemodifiedmodelareaffectedbymanyerrorsinpredictingthedilationdisplacement.Anidealmodelhastheratioofrequaltozero.However,inbothmodelsrisbetween1and2.5.FromastatisticalpointofviewBarton’smodelworksalittlebitbetterthanthemodifiedmodel.However,duetothefollowingreasons,itcanbeconcludedthatthemodifiedmodelshouldbeusedforpredictingthedilationbehaviorofrockfractures:••
Barton’soriginalmodelcanpredictdilationdisplace-mentonlyatthepeaksheardisplacement.
In13outof15sheartestsonroughfractures,negativedilation(compression)wasmeasuredatsmallsheardisplacements.ThesenegativedilationsarenotconsideredinBarton’smodel,whichcancauseoverestimationofthefactorofsafetyinsomeanalysessuchasstabilityofrockblocksintunnels.
–
123
ExperimentalValidationofModifiedBarton’sModelforRockFracturesFig.7ComparisonbetweenBarton’soriginalmodelandthemodifiedmodelinpredictingdilationdisplacementforroughfractures0.60.40.20611
1v/P(a) Limestone 1; Specimen 1 Experimental curve Modified model Barton's model v/P(b) Limestone 1; Specimen 2 0.5/0P/0 P1 2 3 4 Experimental results 0 0.5 1 1.5 2 2.5 3 -0.29v/P(c) Limeston 1; Specimen 3 Experimental results Modified model Barton's model 4/P-10 5 10 15 20 25 30 1.5v/(e) Sandstone; Specimen 2 P1Experimental results Modified model Barton's model 0.500 1 2 3 4 5 6 7 -0.5/P6v/P(g) Granite; Specimen 1 Experimental results 4Modified model Barton's model 200 2 4 6 8 10 12 14 -2/P8v/P(i) Granite; Specimen 3 6Experimental results 4Modified model 2Barton's model 00 2 4 6 8 10 12 -2/P6v/P(k) Limestone 2; Specimen 2 Experimental results 4Modified model Barton's model 20/P0 5 10 15 20 25 30 -2-0.5Modified model Barton's model 1.5v/P(d) Sandstone; Specimen 1 1Experimental results Modified model Barton's model 0.500 1 2 3 /4 P-0.51.3v/P(f) Sandstone; Specimen 3 0.8Experimentalresults0.3/P-0.20 2 4 6 8 10 12 14 4v/P(h) Granite; Specimen 2 3Experimental results Modified model 2Barton's model 10/P0 1 2 3 4 -16 Limestone 2; Specimen 1 5v/P(j)Experimental results 4Modified model 3Barton's model 210-10 5 10 15 20 /P6v/P(l) Limestone 2; Specimen 3 Experimental curve 4Predicted curveBarton curve 2/P00 5 10 15 20 25 30 -2123
612
Table10ComparisonbetweenBarton’soriginalmodelandthemodifiedmodelinpredictingdilationdisplacementforroughfracturesRocktype
ConstitutiveJRC
rAverageÆSTDrmax
rmin
model
Limestone1Barton’smodel
22.51.96±1.68
5.940.23Modifiedmodel
2.12±1.817.460.15SandstoneBarton’smodel332.50±2.5611.030.45Modifiedmodel2.39±2.268.470.30Granite
Barton’smodel1012.25±2.3210.500.51Modifiedmodel
1.85±1.796.900.11Limestone2Barton’smodel124
1.52±1.797.110.06Modifiedmodel
1.10±1.73
7.790.01
r¼ðdvÞpredictedÀðdvÞmeasuredðdvÞmeasured
AcknowledgmentsSimoneAdottoandMarcoInvernizziconductedthisresearchaspartoftheirMSthesesovera6-monthperiodspentattheUniversityofTexas(UT)atAustinwhentheyweresponsoredbythePolytechnicofTurin,Italy.ProfessorDanielePeila,DITAG,PolytechnicofTurinco-advisedSimoneAdottoandMarcoInvernizziandfoundthefundsnecessaryforsupportingtheirstayatUTAustin.
References
AmadeiB,SaebS(1990)Constitutivemodelsofrockjoints.
Internationalsymposiumonrockjoints.A.A.Balkema,LeonAsadollahiP(2004)ModelingRockboltsandShotcreteintunnels
excavatedthroughjointedrockandcomparisonwithanempir-icalmethod,MScThesis.UniversityofTehran,Tehran
AsadollahiP(2009)Stabilityanalysisofasinglethreedimensional
rockblock:effectofdilatancyandhigh-velocitywaterjetimpact,PhDdissertation.UniversityofTexas,Austin
BandisSC,LumsdenAC,BartonNR(1983)Fundamentalsofrock
jointdeformation.IntJRockMechMinSciGeomechAbstr20(6):249–268
BartonN(1971)Estimationofinsitushearstrengthfromback
analysisoffailedrockslopes.IntSympRockMechRockFracture,PaperII-27,Nancy
BartonN(1972)Amodelstudyofrockjointdeformation.IntJRock
MechMinSci9:570–602
BartonN(1973)Reviewofanewshearstrengthcriterionforrock
joints.EngGeol7:287–332
BartonN(1976)Rockmechanicsreview:theshearstrengthofrock
androckjoints.IntJRockMechMinSciGeomechAbstr13:255–279
BartonN(1982)Modellingrockjointbehaviorfrominsitublock
tests:implicationsfornuclearwasterepositorydesign.OfficeofNuclearWasteIsolation,Columbus,OH,96p,ONWI-308,September1982
BartonN,ChoubeyV(1977)Theshearstrengthofrockjointsin
theoryandpractice.RockMech10:1–54
BoulonM(1995)A3Ddirectsheardevicefortestingthemechanical
behaviourandthehydraulicconductivityofrockjoints.InRossmanithHP(ed)Proceedingsofmechanicsofjointedandfaultedrock,p407–413
BradyBHG,BrownET(2004)Rockmechanicsforunderground
mining.Kluwer,TheNetherlands
123
P.Asadollahietal.
DesaiCS,FishmanKL(1991)Plasticity-basedconstitutivemodel
withassociatedtestingforjoints.IntJRockMechMinSciGeomechAbstr28(1):15–26
FoxDJ,KanaDD,HsiungSM(1998)Influenceofinterface
roughnessondynamicshearbehaviorinjointedrock.IntJRockMechMinSci35(7):923–940
GensA,CarolI,AlonsoEE(1990)Aconstitutivemodelforrock
joints,formulationandnumericalimplementation.ComputGeotech9:3–20
GoodmanRE(1976)Methodsofgeologicalengineeringindiscon-tinuousrock.West,NewYork
GrasselliG,EggerP(2003)Constitutivelawfortheshearstrengthof
rockjointsbasedonthree-dimensionalparameters.IntJRockMechMinSci40:25–40
HomandF,LefevreF,BelemT,SouleyM(1999)Rockjoints
behaviourundercyclicdirectsheartests.In:AmadeiK,SmealieScott(eds)Rockmechanicsforindustry.Balkema,Rotterdam,pp399–406
HomandF,BelemT,SouleyM(2001)Frictionanddegradationof
rockjointsurfacesundershearloads.IntJNumAnalMethGeom25:973–999
HuangX,HaimsonBC,PleshaME,OIUX(1993)Aninvestigation
ofthemechanicsofrockjoints-PartI:laboratoryinvestigation.IntJRockMechMinSciGeomechAbstr30(3):257–269
HutsonRW(1987)Preparationofduplicaterockjointsandtheir
changingdilatancyundercyclicshear.NorthwesternUniversity,Evanston
HutsonRW,DowdingCH(1990)Jointasperitydegradationduring
cyclicshear.IntJRockMechMinSciGeomechAbstr27(2):109–119
ISRM(1978)Suggestedmethodsforthequantitativedescriptionof
discontinuitiesinrockmasses.IntJRockMechMinSciGeomechAbstr15:319–368
ISRM(1985)Suggestedmethodsfordeterminingpointloadstrength.
IntJRockMechMinSci22(2):51–60
JaegerJC(1971)Frictionofrocksandstabilityofrockslopes.
Geotechnique21:97–134
JafariMK,AminiHosseiniK,PelletF,BoulonM,BuzziO(2003)
Evaluationofshearstrengthofrockjointssubjectedtocyclicloading.SoilDynEarthqEng23(7):619–630
JafariMK,PelletF,BoulonM,AminiHosseiniK(2004)Experi-mentalstudyofmechanicalbehaviourofrockjointsundercyclicloading.RockMechRockEng37(1):3–23
JingL(1990)Numericalmodelingofjointedrockmassesbydistinct
elementmethodfortwoandthree-dimensionalproblems.LuleaUniversityofTechnology,Lulea
JingL,StephanssonO,NordlundE(1993)Studyofrockjointsunder
cyclicloadingconditions.RockMechRockEng26(3):215–232JohnKW(1970)Civilengineeringapproachtoevaluatestrengthand
deformabilityofregularlyjointedrock.Proceedingsof11thSymposiumonRockMechanics,p68–82
KanaDD,FoxDJ,HsiungSM(1996)Interlock/frictionmodelfor
dynamicshearresponseinnaturaljointedrock.IntJRockMechMinSciGeomechAbstr33(4):371–386
LadanyiB,ArchambaultG(1969)Simulationoftheshearbehaviour
ofajointedrockmass.The11thsymposiumonrockmechanics,Berkeley,p105–125
LeeHS,ParkYJ,ChoTF,YouKH(2001)Influenceofasperity
degradationonthemechanicalbehaviorofroughrockjointsundercyclicshearloading.IntJRockMechMinSci38:967–980LeichnitzW(1985)Mechanicalpropertiesofrockjoints.IntJRock
MechMinSciGeomechAbstr22(5):313–321
MillerRP(1965)Engineeringclassificationandindexpropertiesfor
intactrock.PhDThesis,UniversityofIllinois
ExperimentalValidationofModifiedBarton’sModelforRockFracturesOlssonR,BartonN(2001)Animprovedmodelforhydromechanical
couplingduringshearingofrockjoints.IntJRockMechMinSci38:317–329
PattonFD(1966)Multiplemodesofshearfailureinrock.The1st
CongressoftheInternationalSocietyofRockMechanics,Lisbon,p509–513
PleshaME(1987)Constitutivemodelsforrockdiscontinuitieswith
dilatancyandsurfacedegradation.IntJNumAnalMethodsGeomech11:345–362
QiuX,PleshaME,HuangX,HaimsonBC(1993)Aninvestigationof
themechanicsofrockjoints-partII:analyticalinvestigation.IntJRockMechMinSciGeomechAbstr30(3):271–287
613
WangJG,IchikawaY,LeungCF(2003)Aconstitutivemodelfor
rockinterfacesandjoints.IntJRockMechMinSci40:41–53WibowoJ(1994)Effectofboundaryconditionsandsurfacedamage
ontheshearbehaviorofrockjoints:testsandanalyticalpredictions.UniversityofColoradoatBoulder,Boulder
WibowoJ,AmadeiB,StureS,PriceRH(1993)Effectofboundary
conditionsonthestrengthanddeformabilityofreplicasofnaturalfracturesinweldedtuff:datareport.SandiaNationalLaboratories,Albuquerque,NewMexico
ZubelewiczA,O’ConnorK,DowdingCH,BelytschkoT,PleshaME
(1987)Aconstitutivemodelforcyclicbehaviorofdilatantrockjoints.2ndinternationalconferenceonconstitutivelawsforSaebS(1990)AvarianceonLadanyiandArchambault’sshear
engineeringmaterials,pp1137–1144
strengthcriterion.In:BartonS(ed)Rockjoints.Balkema,Rotterdam,pp701–705
SamadhiyaNK,ViladkarMN,Al-ObaydiMA(2008)Three-dimen-sionaljoint/interfaceelementforroughundulatingmajordiscontinuitiesinrockmasses.IntJGeom8(6):327–335
123
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- fenyunshixun.cn 版权所有 湘ICP备2023022495号-9
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务