arXiv:0706.2322v1 [math-ph] 15 Jun 2007Materialswithadesiredrefractioncoefficientcanbemadebyembeddingsmallparticles.
A.G.Ramm
(MathematicsDepartment,KansasSt.University,
Manhattan,KS66506,USAandTUDarmstadt,Germany)
ramm@math.ksu.edu
Abstract
Amethodisproposedtocreatematerialswithadesiredrefractioncoef-ficient,possiblynegativeone.Themethodconsistsofembeddingintoagivenmaterialsmallparticles.Givenn0(x),therefractioncoefficientoftheoriginalmaterialinaboundeddomainD⊂R3,andadesiredrefractioncoefficientn(x),onecalculatesthenumberN(x)ofsmallparticles,tobeembeddedinDaroundapointx∈DperunitvolumeofD,inorderthattheresultingnewmaterialhasrefractioncoefficientn(x).PACS:03.04.Kf
MSC:35J05,35J10,70F10,74J25,81U40,81V05
Keywords:”smart”materials,wavescatteringbysmallbodies,many-bodyscatteringproblem,negativerefraction,nanotechnology
1Introduction
Thereisagrowinginteresttomaterialswiththedesiredproperties,inparticular,withnegativerefractioncoefficient(see[1]andreferencestherein).In[2]theroleofspatialdispersionsisemphasizedinexplainingunusualpropertiesofmaterials.In[3]theroleofdispersionforwavepropagationinsolidsisdescribed.In[4]boundary-valueproblemsindomainswithcomplicatedboundarieswerestudied.In[6],[7]wavescatteringbysmallbodiesofarbitraryshapesisstudiedandformulasfortheS-matrixareobtained.In[5]ageneralmethodforcreatingmaterialswithwave-focusingpropertiesisproposedandjustified.Ouraiminthispaperistouseasimilarapproachforcreationofthematerialswithadesiredrefractioncoefficientbyembeddingsmallparticlesintoagivenmaterialwith
1
knownrefractioncoefficientn0(x).TheacousticwavescatteringbythegivenmaterialisdescribedbytheHelmholtzequation
1inD′:=R3\\D,223
[∇+kn0(x)]u=0inR,n0(x)=(1)
n0(x)inD.Herek>0isthewavenumberinD′.Equation(1)canbewrittenasthe
Schr¨odingerequation
L0u:=[∇2+k2−q0(x)]u=0inR3,
q0:=k2−k2n0(x).
(2)
Weassumek>0fixedanddonotshowk-variableinq0.Clearly,q0=0inD′.Thescatteringsolutionto(2)isuniquelydefinedbytheradiationcondition:
u0=e
ikα·x
+A0(β,α)
eikr
r
),r:=|x|→∞,β:=
x
.(5)
rr
Weprovethatthesolutiontoproblem(4)–(5)convergesasM→∞tothesolutionoftheproblem
LU:=[∇2+k2−q(x)]U=0inR3,
eikrxikα·x
U=e+A(β,α),r=|x|→∞,β=
r
(6)
+o
1
andgiveaformulaforp(x).Itturnsoutthatp(x)canbemadeanarbitrarydesiredfunctionbychoosingthedensityofthenumberN(x)oftheembeddedparticlesaroundeachpointx∈Dandtheimpedancesζmproperly.Thus,q(x)canbemadeanarbitrarydesiredfunction.Thereforetherefractioncoefficient
n(x)=1−k−2q(x)=n0(x)−k−2p(x)
(9)
canbemadearbitrary,inparticular,negative.
Ifn0(x)isgivenandonewishestocreatethematerialwiththecoefficientn(x),thenonecalculates
p(x)=[n0(x)−n(x)]k2,
andembedsN(x)smallparticlesperunitvolumeofDaroundeachpointx∈Dandchoosestheirimpedancesζmsothatthefunctionp(x)isobtainedforthenewmaterial.InSection2wegiveanalyticalformulasforN(x)andζmandsufficientconditionsfortheconvergenceofthesolutionto(4)–(5)tothesolutionof(6)–(8)asM→∞insuchawaythatrelations(13)-(14)hold.
Wealsoprovethattherelativevolumeoftheembeddedparticlesisnegligible.Moreprecisely,if|Dm|thevolumeofDm,then
lim
M
m=1
|Dm|
M→∞
Jm
,Jm:=
Sm
dsdt
Sm
M
3
.
LetM→∞andassumethatthefollowinglimitexists:
Mlim
Cm(0)(ζm|Sm|)−1:=h(x).
(13)
|x→∞m−x|≤d
Hereandbelowxm∈DmisanarbitrarypointinDm.BecauseDmissmall,the
choiceofthispointinDmisnotimportant.UndertheassumedrelationsbetweenaanddonehaslimM→∞a
quantityNd3
d3=O=O(a2)→0asM→∞
.On1theotherhand,theM(x)Cmζm,whichhasphysicalmeaningoftheaveragequantityCmζmperunitvolumeofDaroundpointx,hasalimit:
lim
NM(x)Cx)
|xM→∞mζm=
C(m−x|≤d
a
andC(0)M
=O(a),andtheexistenceofthefirstlimitin(14)followsfromformula(13)andfromthesecondformula(14).Ourbasicresultistheformula:
n0(x)−n(x)k2
:=p(x)=
C(x)
a
,M=O
1
smallacousticallysoftballsofradiusaperunitvolumeofDaroundeachpointa
x∈D,andtheresultingmaterialwillhaven(x)=n0(x)−k−2p(x).Inparticular,n(x)<0ifp(x)>k2n0(x).
Example2.Chooseanarbitraryfunctionp(x)=p1(x)+ip2(x),p2(x)≤0.Theconditionp2≤0guaranteesuniquenessofthesolutiontoproblem(6)-(7)withq(x)=q0(x)+p(x).Physicallythisconditionmeansthatthemedium,correspondington(x)=1−k−2q(x)hasnonnegativeabsorption.Lettheparticlesbeballsofradiusaandζm=ζm(x)=1
|Sm|=4πa2.ChooseN=N(x)andh(x)=h1+ih2fromthefirstequation(14)using(12):
pNa
1+p2=
(1+h.1)2+h22Thus,
pNa(1+h)
1=
1(1+h1)2+h2.
(16)
2
Wehavethreefunctions:N=N(x)>0,h1andh2,tosatisfytwoequations
(16).Thiscanbedonebyinfinitelymanyways.Forinstance,onecanh1=0,h2=−p2
p21
thedesiredn(x)=n0(x)−k−2p(x),wheretake
.Thus,togetthematerialwithp(x)=p1(x)+ip2(x),oneembeds
N(x)=a−1(p21+p2
2)/p1smallballsofradiusaperunitvolumearoundeachpointxandchoosestheimpedanceζm(x)=4πah(x)−1
,whereh=h1+ih2,h2=−p2/p1,h1=0.
2Derivationoftheresults.
Weseektheuniquesolutionto(4)–(5)oftheform
u=u0+
MG(x,t)σm(t)dt
(17)
m=1Sm
=u0+
MG(x,xm)Qm+
m=1
Mm=1
Sm
G(x,t)−G(x,xm)
σmdt.
HereL0G1=δ(x−y)inR3,Gsatisfiestheradiationcondition,σmaretobechosensothattheboundarycondition(4)issatisfied,Qm:=≫aforallm.
Smσmdt,xm∈Dm.InthegenericcaseQm=0onecanneglectthelasttermin(17)comparedwiththeprecedingtermif|x−xm|>dIndeed,underonehas|G(x,t)−G(x,xm)|≤|∇yG(x,y˜)·(t−xm)|=O
|Qm|
≪|Qm|,wherewealsoassumethatthisassumptiona|Qm|Od=Sm|σm|dt
.Wewillseethatthisassumptionisjustified.Forexample,ifu|Sm=0,thenσmdoesnotchangesignonSm.Thus,genericallyonecanwriteu=u0(x)+
MG(x,xm)Qm,|x−xm|≥d≫a,(18)
m=1
withtheerrorO
a
ThefunctionsG(x,y)andu0(x)areknownbecausen0(x)isknown.LetusderiveanequationforfindingQm.IfQmarefoundthenthescatteringproblem(4)–(5)issolvedbyformula(18)foranyxawayfromanimmediateneighborhoodofthesmallparticles.ToderiveanequationforQmweneedsomepreparations.ThefunctionG(x,y)solvestheequation:
eik|x−y|
G(x,y)=g(x,y)−g(x,z)q(z)G(z,y)dz,g(x,y):=
D
∂Ns
Itisknown([6],p.91)that
Ajσjdt=−σj(t)dt,
Sj
Sj
σj(t)dt.(21)
∂(Tjσj)
2
,(22)
whereAj(k)istheoperatorsimilarto(21)withg(s,t)inplaceofg0(s,t),Ns:=N
istheouternormaltoSjatthepoints∈Sj.OnthesurfaceSjwehave
u=ue(s)+Tjσj,
ue:=u0+
M
G(s,xm)Qm.(23)
m=j
Usingboundarycondition(4)andformulas(22),(23),onegets
ueN(s)−ζjue(s)+
Ajσj−σj
4π|s−t|
6
.
Wereplacethelastintegralbyitsmeanvalue
1
4π|s−t|
4π|Sj|
:=
Jj
,and(25)yields:
Qj=−
ζj|Sj|
andget
d
wherep(x)isdefinedin(15).Applyingto(29)theoperatorL0,definedin(2),andusingtherelationL0G(x,y)=−δ(x−y)yieldsequation(6)withqdefinedin(8).TheradiationconditionforUissatisfied:
A(β,α)=A0(β,α)+A1(β,α),
where
A1(β,α)=limAM(β,α)=−
M→∞
.Formulas(13)–(14)allowonetopasstothelimitM→∞in(28)
U(x)=u0(x)−G(x,y)p(y)U(y)dy,(29)
D
(30)
1
4π|x|
u0(y,−β)+o
Inourderivationsitwasassumedthatζm=0.Ifζm=0forallm,thatis,the
smallparticlesareacousticallyhard,thenQm=0inthefirstorderwithrespecttoka.OnecanshowthatinthiscaseQm=O(k2a3),andthatthelastsum
7
1
|x|
=β.(32)
in(17)isofthesameorderofmagnitudeastheprecedingsum.Consequently,thetheoryinthiscaseisquitedifferent:theeffectivefieldinthemediumisnotdescribedbyequation(29),whichisequivalenttoalocalequation(6).Infact,theeffectivefieldinthiscaseisdescribedbyanintegrodifferentialequationwhichisnotequivalenttoalocaldifferentialequation.
LetusexplaintherelationQm=O(k2a3),mentionedabove.Write(24)withζj=0,integrateoverSjandusethefirstformula(22)toget
Qj=ueNds=∆uedx=O(k2a3).
Sj
Dj
References
[1]Agranovich,V.M.,Gartstein,Yu.N.,Spatialdispersionandnegativerefrac-tionoflight,UspekhiPhys.Nauk,176,N10,(2006),1051–1068.[2]Agranovich,V.M.,Ginzburg,V.L.,Crystalopticswithspatialdispersion
andexcitons,Springer-Verlag,Berlin,1984.[3]Landau,L.D.,Lifshitz,E.M.,Electrodynamicsofcontinuousmedia,Perga-monPress,Oxford,1984.[4]Marchenko,V.,Khruslov,E.,Boundary-valueproblemsindomainswith
fine-grainedboundary,NaukovaDumea,Kiev,1974.[5]Ramm,A.G.,Distributionofparticleswhichproducesa”smart”material,
Jour.Stat.Phys.,127,N5,(2007),915-934.[6]Ramm,A.G.,Wavescatteringbysmallbodiesofarbitraryshapes,World
Sci.Publ.,Singapore,2005.[7]Ramm,A.G.,Wavescatteringbysmallparticlesinamedium,Phys.Lett.
A.,(2007)(toappear)[8]Ramm,A.G.,Inverseproblems,Springer,Berlin,2005.
8