您好,欢迎来到纷纭教育。
搜索
您的当前位置:首页首钢技术研究院

首钢技术研究院

来源:纷纭教育
210吨顶底复吹转炉脱磷评价

崔阳 1南晓东 2 张莉霞 1于文涛 2 冯军1 朱立新 1

(1 首钢技术研究院, 北京 100043)

(2 首钢迁安钢铁有限责任公司,河北 0404)

摘 要: 本研究分析了目前首钢迁钢公司炼钢厂转炉吹炼情况,重点讨论了210吨转炉脱磷能力。目前首钢迁钢公司炼钢厂转炉吹炼水平较高,钢中终点磷含量能够稳定控制在60ppm左右,回硫量也能够控制在20ppm。分析表明,终渣全铁含量过高以及终渣脱磷平衡度分散性大。

Estimation of Dephosphorization for Top and Bottom Blowing

Converter of 210 t

CUI Yang1 NAN Xiaodong2 ZHANG Lixia1 YU Wentao2 FENG Jun1 ZHU Lixin1

(1Shougang Research Institute of Technology, Beijing 100043) (2Shougang Qian′an Iron & Steel CO..LTD,Heibei 0404)

Abstract: In the research, the metallurgical characteristics in the top and bottom blowing converter of 210 t for Shougang Qian’an Iron & Steel CO..LTD were investigated, and the dephosphorization between slag and steel was mainly discussed. At present, the low concentration of phosphorus such as 60ppm in steel could be obtained, and the resulphurization control also reached a high level such as 20ppm. Moreover, the concentration of T. Fe was high and the data dispersability for the degree of phosphorus distribution equilibrium was large at the blowing end point.

1 前言

首钢迁钢公司炼钢厂现有三座210吨(公称容量)顶底复吹转炉,全部采用自动化炼钢。炼钢自动化控制系统包括静态控制和以副检测信息为基础的动态控制相结合的方法。随着副投入使用,转炉终点钢水磷含量控制水平得到大幅提高。以Q345B为例,副投入前终点磷含量平均为0.0185%,投入后磷含量平均为0.011%。以管线钢为例,钢中终点磷含量平均为0.007%。在优化铁水预处理扒渣工艺、采用优质低硫废钢和造渣材料以及控制废钢装入量等措施后,转炉终点硫含量控制水平也得到提高。

本文结合首钢迁钢公司炼钢厂转炉吹炼的现状,评价了转炉的脱磷能力。

2 转炉吹炼现状

2.1 钢水中碳含量和氧含量的关系

式1为钢中碳氧反应方程式,在低碳领域,C-O关系能被表达,如式2所示。

Cin Fe+Oin Fe=CO(g) ···························································································(1)

log[mass%C][mass%O]11602.0031)·····················································(2)

PCOT1

图1为部分炉次转炉吹炼终点的C-O关系图,图中的曲线为1923K并且假定化学平衡状态下计算的C-O理论平衡线。在本图所示的碳含量范围内,C-O曲线接近于PCO=0.75atm的理论平衡线,说明了较好的吹炼效果。通过与川崎制铁公司的K-BOP对比,几乎得到了相同的吹炼效果。

1600Present study

K-BOP2)1400

1200

PCO=0.75 atm(1923 K) 1000

800

K-BOP 600

400

200t=1620-1750 ℃

0

00.020.040.060.08

[mass%C]inFe

Fig. 1 Relationship between [mass%C] and [mass%O]

at end point of top and bottom blowing converter. 35 t=1620-1750 ℃Present study 2)K-BOP30

25

20

15 K-BOP10

5

00.020.040.060.08

[mass%C]inFe

Fig. 2 Relationship between [mass%C] and (mass%T. Fe)

at blowing end point.

T.Fe,mass%[O]inFe, ppm2

2.2 钢水中碳含量和渣中全铁含量的关系

图2为吹炼终点钢水中碳含量和渣中全铁含量的关系图。随着吹炼终点碳含量的降低,渣中T. Fe含量增加。在低碳领域,相对于川崎制铁公司的K-BOP,只有部分炉次达到了与其相当的水平,大部分炉次的终渣T. Fe含量过高,这可能是因为吹炼末期添加铁矿石导致未还原氧化铁残留在渣中。分别基于测定的钢中氧含量(假定达到热力学平衡以及液态FetO活度为基准)和经验公式计算了终渣氧化铁活度aFetO被计算了,计算方法如式3-6所示,计算结果如图3所示。其中,[mass%O]sat.为纯液态FetO(aFetO=1)条件下的钢中饱和氧含量。选择终渣SiO2含量计算的氧化铁活度公式的理由是由于其实验条件和终渣组成与本研究相近,并且氧化铁活度系数只与渣中SiO2含量有关5)。根据图3所示结果,能够清楚地观察到基于终渣SiO2含量计算的氧化铁活度值要高于基于钢中氧含量计算的氧化铁活度值,说明了吹炼末期添加铁矿石中的氧化铁部分未被还原,导致终渣全铁含量过高。

················································································(3) tFe(l)Oin FeFetO(l)in slag·

··········································································(4) aFetO[mass%O]/[mass%O]sat.·

3)·······························································(5) log[mass%O]sat.6320/T2.374·

··························································(6) logFetO0.0257(mass%SiO2)-0.300 4)·

10.80.6aFetO:logγFetO0.0257(mass%SiO2)0.300 4)aFetO0.40.200.04aFetO[mass%O]/[mass%O]sat.0.080.120.16[mass%O]inFe3)0.2Fig. 3 Calculated results of activity of FetOin slagfor blowing end point.3

2.3 钢水中磷含量和渣中全铁含量的关系

图4为部分炉次吹炼终点钢水中磷含量和渣中全铁含量的关系图。随着渣中T. Fe含量的增加,钢中磷含量降低,渣中氧化铁起到了脱磷作用。但是当T. Fe含量高于23%时,钢中磷含量展示了升高的倾向,这主要是因为渣中氧化铁含量过高稀释了渣中CaO,正如式7所示的脱磷反应。从热力学角度,增加炉渣碱度和适当增加渣中FetO含量等有利于提高渣钢间磷的平衡分配比。但是根据Balajiva等的研究结果 6, 7),对于CaO-SiO2-P2O5-FetO渣系,随着炉渣碱度(CaO/SiO2)增加,磷平衡分配比增大,在(mass%FetO)=12-16之间出现最大值,过度增加FetO含量会使渣中CaO浓度降低,导致了脱磷能力下降。即使所用炉渣组成不同,但是这与我们的结论是一致的。

23································································(7) 2Pin Fe5Oin Fe3Oin slag2(PO4)·

0.02 t=1620-1750 ℃ 0.016 0.012 0.008

0.004

0

1015202530

T.Fe,mass%

Fig. 4Relationship between [mass%P] and (mass%T. Fe)

at blowing end point.

3 脱磷评价

以表1所示低碳钢钢种为例,讨论所用CaO-SiO2-MgO-FetO渣系的脱磷能力。在评价过程中,该渣系中所含低含量CaF2和Al2O3等的影响忽略。图5为部分终渣组成,其中FetO含量根据式8和式9计算。

(mass%FeO)=0.857(mass%T. Fe)-0.95 8)····························································(8) (mass%Fe2O3)=0.471(mass%T. Fe) +1.41 8)·······················································(9)

Table 1 Produced steel composition (mass%). C Si Mn P S Nb N 1.70-1.90 ≤0.012 ≤0.003 0.04-0.07 0.15-0.25 0.06-0.09 ≤60ppm

[mass%P]inFe4

SiO2+MnO+Al2O3+PO0251001020%MgO)(masSs%9080706050403020100100)O5P2)+(iO23040mass+(mnO%Mss)+(ma 6070809050s%CaO(mas100010203040T=1922-1987K50607080CaO+MgO (mass%FetO)FetOFig. 5Slag composition at blowing end point.0.100.010

0.080.008

0.060.006

0.040.004

0.020.002

0.000.000

020406080100

oxygen blow duration (%) Fig. 6Change examples of [mass%P] and [mass%S] during blowing.

图6为某三个炉次吹炼过程中钢中磷和硫含量随吹炼时间的变化。对于钢中磷含量,总体呈现了直线下降的趋势。在吹炼终点,达到相当低的磷含量,如60ppm。对于钢中硫含量,回硫量基本稳定控制在20ppm以内。因此,首钢迁钢210吨顶底复吹转炉具有良好的脱磷和控制回硫效果。

分配比被定义为渣中五氧化二磷含量和钢中磷含量的比值,如式10所示。脱磷平衡度被定义为实测渣钢间磷的分配比和计算的理论分配比的比值,如式

[mass%P]inFe5

[mass%S]inFeasAs%)+(l2O3mass%9011所示。其中,LPobs.为转炉终渣实测的分配比,LPequ.为基于式12-14以及钢水温度计算的分配比。其中选择式14的理由是由于其实验条件和终渣组成与本研究相近。

··········································································(10) LP(mass%P2O5)/[mass%P]·························································································(11) logLP/logLP·

obs.equ.·······························································(12) 2P5FetO(l)in slagP2O5in slag5tFe·

kP(mass%P2O5)·······································································(13) 25[mass%P](mass%FetO)logkP11.20log(mass%CaO)0.3(mass%MgO)0.05(mass%FetO)·······(14)

4) 29600/T36.25 图7为部分炉次脱磷平衡度的计算结果。其中日本NKK公司(现JFE公司)的250吨顶底复吹转炉的分析结果也被表示在图5中 4)。在本实验条件下,通过对比发现首钢迁钢公司炼钢厂210吨转炉的终渣脱磷平衡度部分炉次达到了很高的水平,但是整体脱磷平衡度数值的分散性大,说明了炉渣的脱磷能力没有被完全发挥和吹炼过程中的磷浓度控制水平需进一步提高。即使钢中终点磷含量能够满足要求,首钢迁钢铁公司炼钢厂应该对造渣制度和底吹等工艺参数进行进一步优化。

1.1

1.0

0.9

0.8

0.7

Present study:converter(210t)

USUI et al.4):converter (250t) 0.6

0.000.030.050.080.10

Bottom gas flow rate (Nm3/min·t)

Fig. 7 Calculated results of degree of phosphorus distribution equlibrium.

6

4 结论

本研究结合目前首钢迁钢公司炼钢厂转炉生产数据,分析了转炉吹炼情况,重点讨论了210吨转炉脱磷能力。

(1) 对于吹炼低碳钢,C-O曲线接近于PCO=0.75atm的理论平衡线,

说明了较好的吹炼效果。

(2) 终渣全铁含量过高,含有部分未还原氧化铁。 (3) 钢中磷含量随着渣中T. Fe含量的增加而降低。但是当T. Fe含量

高于23%时,钢中磷含量展示了升高的倾向。渣中氧化铁含量过高影响了渣中CaO的脱磷效果。

(4) 在本实验条件下,终渣脱磷平衡度部分炉次达到了很高的水平,

但是整体脱磷平衡度数值的分散性大。

参考文献: 1) S. Ban-ya et al.: TETSU-TO-HAGANE, 48(1962), p. 925.

2) J. Nagai, T. Yamamoto, H. Yamada, H. Take, R. Tachibana, H. Ohmori, K. Nakanishi and Y. Iida: KAWASAKI STEEL GIHO, 14(1982), p. 240.

3) C. R. Taylor and J. Chipman: Trans. Metall. Soc. AIME. 154 (1943), p. 228.

4) T. Usui, K. Yamada, Y. Kawai, S. Inoue, H. Ishikawa and Y. Nimura: TETSU-TO-HAGANE, 77(1991), p. 11.

5) H. Suito and R. Inoue: TETSU-TO-HAGANE, 70(1984), p. 186.

6) K. Balajiva and P. Vajragupta: J. Iron and Steel Inst., 153 (1946), p.115. 7) K. Balajiva and P. Vajragupta: J. Iron and Steel Inst., 1535(1947), p.563. 8) Y. Yamamoto et al.: SEITETSU KENKYU,2 (1978), p. 8397.

7

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- fenyunshixun.cn 版权所有 湘ICP备2023022495号-9

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务