浙江大学学报(农业与生命科学版) 39(3):291~298,2013 Journa/of Zhejiang University(Agric.&Life Sci.) http://www.journals.zju.edu.en/agr E-mail:zdxbnsb@zju.edu.CD DOI:10.3785/j.issn.1008—9209.2012.11.141 与黄瓜全雌性基因连锁的SSR分子标记 周胜军 ,张鹏,朱育强,陈新娟,陈丽萍 (浙江省农业科学院蔬菜研究所,杭州310021) 摘要黄瓜(Cucumis sativus I .)是重要的蔬菜栽培作物,其雌花率的高低直接影响着黄瓜产量.目前优良的黄瓜 品种都具备全雌性或强雌性特征,全雌性也是黄瓜优势育种的重要途径.但由于黄瓜性别表现受到遗传和环境等 多种因素的影响,传统的从表型上进行全雌性基因的选择效率不高.然而,借助与目的基因相连锁的分子标记进行 辅助育种能直接从基因型上对后代单株进行选择,准确率高,能够在苗期进行性型鉴定,从而大大地提高育种效 率.以全雌品系240一i一2—2—3—1自交系和弱雌品系3—5—1—3—2—1—1—1—1—2及其F1、F2、BCl P1和 BC P 世代为试验材料,进行田间鉴定和遗传规律分析.结果表明:黄瓜性别表达由寡基因控制,并受到一些背景 基因的修饰;黄瓜全雌性相关基因遗传模型符合加性一显性一上位性遗传模型.利用PCR技术和SSR分子标记方 法,通过亲本、F 全雌和全雄基因池筛选,从699对SSR引物组合中获得稳定的多态性引物组合2对,即 CSWCT25和SSR18956;经回收、测序,特异片段全长分别为331 bp和145 bp,与黄瓜全雌性基因的连锁距离分别 为7.7 cM和6.8 cM,均可用于黄瓜全雌系品种的辅助选育. 关键词 黄瓜;雌性系 分子标记 中图分类号S 642.2 文献标志码A Identification of SSR marker linked to gynoecious loci in cucumber(Cucumis sativus L.).Journal of Zhejiang University(Agric.&Life Sci.),2013,39(3):291—298 ZHOU Shengjun ,ZHANG Peng,ZHU Yuqiang,CHEN Xi ̄uan,CHEN Liping(Institute of Vegetables Zhejiang Academy of Agricultural Sciences,Hangzhou 31 0021,China) Summary Gynoecy plays an important role in cucumber(Cucumis sativus L.)heterosis breeding and identification of the markers 1inked to this character will facilitate selection of gynoecious cucumber line in breeding program.Traditional selection for cucumber cultivars with gynoecious line has required evaluation in complicated environments over several years,which is long period,time and labor consuming.Molecular markers offer a faster and more accurate way for breeding,as selection can be based on genotype rather than phenotype.The use of molecular markers for indirect selection of important agronomic characters,or marker—assisted selection(MAS)can improve the efficiency of traditional breeding.Many studies developed a lot of SSR markers,which had greatly facilitated MAS in cucumber breeding.NOW some studies showed that some markers were connected with gynoecious gene but the distances were not compact,SO few were availably applied to breeding. The aim of this study was genetic analysis of gynoecy and identification of molecular marker associated with gynoecious gene using gynoecious line,monoecious line,and SSR marker. The genetic analysis of cucumber gynoecious was evaluated with a gynoecious line 240—1—2—2—3—1, 基金项目:国家科技攻关资助项目(2O12AA1oo1o3OO6);浙江省科技计划资助项目(2o11co2oo1);杭州市科技计划资助项目(2OllO332HO8) 通信作者(Corresponding author):周胜军,E—mail:zsj6869@163.corn 收稿日期(Received):2012—11—14;接受日期(Accepted):2013—01—30;网络出版日期(Published online):2013—05—15 URL:http://www.cnki.net/kcms/detail/33.1247.S 201305I5.1623.007.html 浙江史学学报(农业与生命科学版) 第3 9卷 monoecious line 3一S一1—3—2—1—1—1—1—2 and their F1,F2,BC1 P1,BC1 P2 populations in the present study. Total DNA of parents and F2 were isolated from freeze-dried 1ear tissue by the CTAB method.SSR markers were analyzed with gynoecious line 240一l一2—2—3一l,monoecious line 3—5~1—3—2—1—1—1—1—2,F2,and 699 pairs of SSR primers.SSR analysis was performed with the primers.PCR was performed in 20 t*I reaction containing 2 L genomic DNA(2O ng),10 pmol/ ̄L primers 0.4 L,respectively,2.5 mmol/L Mg 2 I ,2 mmol/L dNTP 1 L,5 U//,L Taq DNA polymerase enzyme 0.1 L,10×buffer 2 L and double distilled water.The amplification profiles were 5 min at 94℃,followed by 35 cycles of 30 s at 94℃;1 rain at 55℃.1 rain at 72℃: then 10 min at 72℃.After amplification,the PCR products were mixed with loading buffer(2.5 mg/mI bromophenol blue,2.5 mg/mI diphenylamine blue,10 mmol/L EDTA,95 ( )formamide),denatured for 5 min at 94℃and put on ice for 5 min.The denatured PCR products were separated on 6 ( V)denaturing polyacrylamide gel at 1 00 W power and visualized by silver straining.Polymorphic fragments of primers were cloned and sequehced.Linkage analysis used the software of Mapmaker V3.0. During analysing the separated rate of F1 and Fz,the results showed that the gynoecy in 240一l一2—2—3—1 was controlled by oligogene with some background genes modified.Inheritance of gynoecy was accord with the additive- dominant-epistatic mode1.From 699 pairs of SSR primer,two pair of stable SSR markers(CSWCT25 and SSR18956),331 bp and 145 bp in bands size were obtained respectively during PCR products of two SSR markers cloned and sequenced,and linkage analysis indicated that its genetic distance to the gynoecious loci was 7.7 cM and 6.8 cM,respectively.Two SSR markers are tightly 1inked to gynoecious loci on the chromosome 6 In sum,knowledge of location of gynoecious gene in cucumber and its related traits in crosses will be helpful to the design of more effective selection schemes to develop gynoecious cucumber genotypes.Progress in breeding gynoecious lines is still slow because of the complex inheritance of this character.However,gynoecious cultivars and the markers identified in this study can contribute to improving gynoeeious line.Two SSR markers could be used effectively for molecular marker- assisted selection in breeding programs to develop cucumber gynoecious line breeding. Key words cucumber(Cucumis sativus L.);gynoecious;molecular marker 黄瓜(Cucumis sativus L.)是我国主要蔬菜作物 育种研究具有重要的理论与实践意义. 之一,在全国各地均有广泛栽培.黄瓜植株性型多样, 目前,通过对黄瓜性别决定连锁基因的分子标 主要分为雌雄异花同株(monoecious)、全雌株 记研究,已获得了与全雌性F位点紧密连锁的ACC (gynoecious)、两性株(hermaphroditic)、雄花两性花同 合酶基因(CS-ACS1基因)片段标记口 ;与M基因 株(andromonoecious)、雄花、雌花及两性花同株(tri— 连锁的SRAP标记ME23SA4(17.8 cM)}_2]、SSR标 monoecious)等.利用黄瓜全雌品系制种可以免去人工 记SSR23487(0.28 cM)、SSR19914(3.2O cM)和 或化学去雄工序,极大地简化杂交种的配制工作,并 SCAR标记SCAR123(0.94 cM)口 ;与M基因共分 且制成的1代杂种纯度很高,是黄瓜优势育种的首选 离SNP标记SN1_4],与强雌基因连锁的CAPS标记 途径之一,而黄瓜的雌花比例也是影响产量的决定性 C—MT700[5 ;与全雌性基因连锁的RAPD[6 ]、 因素.因此,选育全雌性品种是黄瓜育种研究的主要 AFLP[ 、SRAP、SCAR[ 、ISSR标记 ]及特异片 目标之~. 段[1 n 等.但是能用于黄瓜全雌性辅助育种实践的 长期以来,黄瓜雌性系的选育都是依靠田间开 分子标记仍不多见. 花习性给予分级鉴别.这种表型鉴定方法存在耗费 SSR标记技术现已普遍地用于图谱的构 大、准确率低、周期长并受环境因素和主观因素影响 建l_】 、性状连锁标记的筛选口 、亲缘关系的分 等缺点.分子标记的出现为黄瓜性型鉴定提供了新 析_l 。。等工作.本研究以全雌品系240—1—2—2~ 的技术手段,分子标记辅助选择(molecular marker- 3—1自交系为供体亲本,弱雌品系3—5—1—3—2— assisted selection,MAS)是结合现代分子生物学与 1—1—1—1—2自交系为受体亲本杂交,通过对杂交 传统遗传育种学,借助分子标记对育种材料从DNA 后代进行自交,构建具有不同基因型的分离群体;应 水平上进行选择,从而快速选择得到具有目的基因 用BSA法获得与黄瓜全雌性紧密连锁的SSR分子标 后代的方法,简单易行,效率高,能够实现苗期的性 记,并将特异片段进行回收测序,经验证,获得的SSR 型鉴定,极大地缩短传统育种的进程,对黄瓜全雌性 标记可用于标记辅助全雌性种质资源的发掘、鉴定与 第3期 周胜军,等:与黄瓜全雌性基因连锁的SSR分子标记 杂交新组合的选择,本研究的开展为黄瓜全雌性品种 的选育与利用提供了理论依据. 1 材料与方法 1.1植物材料 供试黄瓜材料由浙江省农业科学院蔬菜研究所 提供,种植于浙江省农业科学院杨渡科研基地温室 中.以黄瓜全雌品系240—1—2—2—3—1自交系作 为母本,弱雌品系3—5~1—3—2—1—1—1—1—2 自交系作为父本,构建P 、P 、F1、F 、BC P 、BC P 等6世代材料,分析黄瓜全雌性遗传规律.利用F。 分离群体获得与黄瓜全雌性基因相关的分子标记. 1.2黄瓜性别分化遗传分析 幂U用240—1—2—2—3—1和3—5—1—3~2—1— 1—1—1—2的F 、F2、BC。P 、BGP 做性型遗传分析. 植株开花后分别调查统计单株的第1~2O节位的雌 花、雄花总数,统计完成的花以毛笔涂抹红墨水区分, 计算雌花百分比.全株上下均为雌花,无1朵雄花为 全雌性;雌花百分比大于或等于9O 为强雌性;小于 或等于1O%的为弱雌性. 以基因型为抽样单位,采用Jackknife重复抽样 技术计算各项遗传参数的估计值和预测值的标准 误,并进行遗传参数显著性检验.用GENVARIR 计算软件,采用最小范数二阶无偏估算法 [MINQUE(1)法]估算遗传模型中的各项方差分量 及其对表现型方差的比率_2 .采用调整无偏预测法 (adjusted unbiased prediction,AUP)预测遗传效应 值.以加性一显性模型(AD模型)和加性一显性一上位 性模型(ADAA模型)分别检验遗传模型. 1.3基因组DNA的提取和DNA池的构建 采用CTAB法L2 提取基因组DNA.应用BSA 法[23j,各取30株全雌和全雄单株DNA等量混合,构 建成全雌和全雄基因池用于SSR多态性引物的筛选. 1.4 SSR分子标记分析及特异片段的测序 利用亲本、全雌和全雄基因池,在699对SSR 引物中筛选特异引物.PCR扩增反应总体系为20 t*L,成分为:黄瓜基因组DNA 20 ng,10 pmol/t,L 弓【物各0.4 L,2.5 mmol/L Mg。 2 L,2 mmol/L dNTP 1 L,5 U/t ̄L Taq DNA聚合酶0.1 L, 10×缓冲液2 L,加无菌重蒸水补齐至2O L.PCR 反应扩增程序为:94℃预变性5 min,94℃变性 30 S,55℃退火1 min,72℃延伸1 min,35个循环, 72℃延伸10 min.选择性扩增产物在6 变性聚丙 烯酰胺凝胶中电泳分离,在恒定100 W功率下电泳 至溴酚蓝到达凝胶另一端,采用银染法[2 ]染色. 将多态性片段用刀片从变性聚丙烯酰胺凝胶上 切下,用AxyPrep DNA凝胶回收试剂盒回收纯化, 用pGEM2T easy载体连接,单菌落质粒提取后,经 酶切鉴定,由上海生工生物技术服务有限公司测序. 1.5连锁分析 . 分子标记的记录采用Mapmarker V3.0软件口 记录方法.对于SSR共显性标记,父本的纯合带型记 为A,母本的纯合带型记为B,两亲本的杂合带型记 为H,数据缺失记为“一”.以Mapmarker V3.0软件对 F2分离群体单株的标记和性型表现数据进行连锁分 析,利用Kosambi函数L2 将重组率转化为遗传图 距,cM. 2 结果与分析 婷 嘲 0 .I ∞_} ∞ p —∞ ∞踟∞∞2.1黄瓜性别分化遗传分析 雌性系F2分离群体次数分布图如图1所示.从 图中可以看出,黄瓜性别表达由寡基因控制,并受到 一些背景基因的修饰.根据P 、P2、F。、F2、BC P 、 BC P2等6世代材料田问调查数据分析,黄瓜雌性系 相关基因遗传模型符合加性一显性~上位性遗传模型. 1O 20 30 4O 5O 60 70 80 9O 100 雌花百分比 Percentage of femal flower(%) 图1雌性系分离群体数量分布图 Fig.1 Quantitative distribution map of Fz individual of gynoecious plants 2.2 SSR引物的筛选 选用699对黄瓜SSR引物,对240—1—2—2— 3—1和3—5—1—3~2—1—1—1—1~2自交系进行 多态性分析.利用亲本对SSR引物进行筛选,其中 75对SSR引物在两亲本间表现出多态性(图2),多 态性比率为1O.7 . 利用全雌和全雄基因池对在两亲本问表现多态 —西吕 加0 第3期 周胜军,等:与黄瓜全雌性基因连锁的SSR分子标记 297 RefeFences: [1]Trebitsh J,Staub J E,ONell S D.Identification of a 1一aminocyclopropane一1一carboxylic acid synthase gene linked to the female(F)locus that enhances female sex expression in cucumber.Plant Physiology,1997,1 13:987—995. [2]邓思立,潘俊松,何欢乐,等.黄瓜M基因连锁的SRAP分子 标记.上海交通大学学报:农业科学版,2006,24(3): 240—244. Deng S I ,Pan J S,He H L,et a1.SRAP molecular marker linked to M gene in cucumber.Journal of Shanghai Jiaotong University Agricultural Science,2006,24(3): 240—244.(in Chinese with English abstract) [3] 时秋香,刘世强,李征,等.与黄瓜M基因连锁的三个共显性 标记.园艺学报,2009,36(5):737—742. Shi Q X,Liu S Q,Li Z,et a1.Three co—dominant markers linked to M gene in Cucumis sativus.Acta Horticulturae Sinica,2009,36(5):737—742.(in Chinese with English abstract) [4]刘世强.黄瓜性别决定基因M的精细定位及转录表达谱分 析.南京:南京农业大学.2008:56—87. Liu S Q.Fine-mapping and transcription expression profiling for sex determination in cucumber. Nanjing: Nanjing Agricultural University.2008:56—87.(in Chinese with English abstract) [5] 向太和,王利琳,庞基良,等.不同性别类型黄瓜ACC合酶基 因的单核苷酸多态性标记和酶切扩增长度多态性标记.生物 化学与生物物理进展,2006,33(4):362—367. Xiang T H,Wang L L,Pang J L,eta1.Development of SNP marker and CAPS marker linked to ACC synthase gene in different sexual phenotypes of cucumber.Progress in Biochemistry and Biophysics。2006,33(4):362—367.(in Chinese with English abstract) [6] 陈劲枫,娄群峰,余纪柱,等.黄瓜性别基因连锁的分子标记 筛选.上海农业学报,2003,19(4):11—14 Chen J F,Lou Q F,Yu J Z,et a1.Screening of RAPD marker linked to cucumber sex determination gene.A cta Agriculturae Shanghai,2003,19(4):l1~14.(in Chinese with English abstract) [7]周晓艳.黄瓜全雌性相关的RAPD标记及ACC合酶基因的 克隆.山东曲阜:曲阜师范大学.2007:39—50. Zhou X Y.RAPD molecular marker linked to gynoecious loci and ACC synthase gene cloned in cucumber. Qufu, Shandong:Qufu Normal University.2007:39—50.(in Chinese with English abstract) [8]娄群峰,陈劲枫,Molly J,等.黄瓜全雌性基因连锁的AFLP 和SCAR分子标记.园艺学报,2005,32(2):256—261. Lou Q F,Chen J F,Molly J,et a1.Identification of AFLP and SCAR molecular markers linked to gynoecious loci in Cucumis sativus L.Acta Horticulturae Sinica,2005,32(2): 256—261.(in Chinese with English abstract) [9] 毕喜红.黄瓜雌性系控制基因的SRAP和SCAR分子标记. 重庆:西南大学.2006:30—56. Bi X H.SRAP and SCAR molecular marker linked to gynoecious loci in cucumber. Chongqing: Southwest University.2006:30—56.(in Chinese with English abstract) ElO]刘晓虹,陈惠明,许亮,等.黄瓜性别决定基因相关的分子标 记.湖南农业大学学报:自然科学版,2008,34(4):403—408. Liu X H,Chen H M,Xu L,eta1.On the molecular markers of sex determining genes in cucumber.Journal of Hunan Agricultural University:Natural Sciences,2008,34(4): 403—408.(in Chinese with English abstract) [11] 程立宝,秦智伟,李淑艳,等.与黄瓜雌性性状连锁的c ̄acslg 基因特异片段克隆与鉴定.中国农业科学,2006,39(12): 2545—2550. Cheng L B,Qin Z W,Li S Y,et a1.Cloning and identification of special c ̄acsl g gene—linked to gynoecious in cucumber.ScientiaAgricultura Sinica,2006,39(12):2545~ 2550.(in Chinese with English abstract) [1 2]王瑞,林毓娥,黄河勋,等.华南型黄瓜雌性性状分子标记初 报.园艺学报,2009,36(增刊):1998. Wang R,Lin Y E,Huang H X,et a1.Molecular marker linked to gynoecious loci in Huanan cucumber.Acta Horticulturae Sinica,2009,36(Supp1):1998.(in Chinese with English abstract) [13] 张西露,刘峰,戴雄泽,等.黄瓜性别控制基因CsACS1G的分 子标记及其快速检测湖南农业大学学报:自然科学版, 2010,36(5):512—515. Zhang X L,Liu F,Dai X Z,et a1.Identification of CsACS1G gene DNA markers and DNA rapid detection in cucumber. Journal of Hunan Agricultural University: Natural Sciences,2010,36(5):512—515.(in Chinese with English abstract) [-14]金梦阳,刘列钊,付福友,等.甘蓝型油菜SRAP、SSR、AFLP 和TRAP标记遗传图谱构建.分子植物育种,2006,4(7): 520—526. Jin M Y,Liu L Z,Fu F Y,et a1.Construction of a genetic linkage map in Brassica napus based on SRAP,SSR,AFLP and TRAP.Molecular Plant Breeding,2006,4(7):520— 526.(in Chinese with English abstract) [1 5]马海财,马雄,柳剑丽,等.利用SSR分子标记构建甜瓜遗传 图谱.福建农林大学学报:自然科学版,2010,1(6):47—52. Ma H C,Ma X,Liu J L,et a1.Construction of a molecular genetic map for melon with SSR markers.Journal of Fujion Agriculture and Forestry University Natural Science Edition,2010,1(6):47—52.(in Chinese with English abstract) [16]杨燕宇.甘蓝型油菜SSR分子标记图谱构建和油酸含量 QTL定位.长沙:湖南农业大学.2011:37—49. Yang Y Y.Construction of SSR—based genetic map and QTL mapping for oleic acid content in rapeseed(Brassica napus L.).Changsha:Hunan Agriculture University.2011:37— 49.f in Chinese with English abstract) [17]袁有禄,张天真,郭旺珍,等.棉花高品质纤维性状QTLs的 分子标记筛选及其定位.遗传学报,2001,12(11):1151— 298 浙江大学学报(农业与生命科学版) 第3 9卷 1161. Yuan Y L,Zhang T Z,Guo W Z,et a1.Molecular tagging and mapping of QTLs for super quality fiber properties in upland cotton.Aeta Genetica Sinica,2001,12(11):1151— 1161.(in Chinese with English abstract) [18] 王海莲,秦岭,管延安,等 高粱SSR技术体系的优化及分子 连锁图谱的构建[J/0L].分子植物育种:网络版,2011,9: 1351—1358.http://mpb.chinese.s0phiapublisher.corn. Wang H L,Qin L,Guan Y A,et a1.Optimization of SSR technology system and construction of molecular genetic map of sorghum[J/OL].Molecular Plant Breeding:Online. 2011,9:1351—1358.http://mph.chinese.sophiapublisher. eom(in Chinese with English abstract) [19] 吴晓雷,贺超英,陈受宜,等.用SSR分子标记研究大豆属种 间亲缘进化关系.遗传学报,2011,4(8):359—366. Wu X I ,He C Y,Chen S Y,et a1.Phylogenetic analysis of interspecies in genus glyeine through SSR markers.Acta Genetica Sinica,2011,4(8):359—366.(in Chinese with English abstract) [201 黄玮,杨敏,秦保平,等.利用SSR分子标记分析彩色小麦的 亲缘关系与遗传多样性.作物学报,2012,38(6):1135— 1139. Huang W,Yang M,Qin B P,et a1.Relationships and genetic diversity of colored—grain wheat detected by SSR markers.Acta Agronomica Sinica,2012,38(6):1135一 l139.(in Chinese with English abstract) [21] Rao C R.Estimation of variance and covariance components MINQUE theory.Journal of Multivariate Analysis,1971,1 (3):257—275. [22] 王宏建,吴越,谷维,等.改进的CTAB法提取黄瓜DNA.黑 龙江农业科学,2006(5):124—125. Wang H J,Wu Y,Gu W,et a1.Extraction of DNA from cucumber by improved CTAB method.Heilongjiang Agricultural Sciences,2006(5):124—125.(in Chinese with English abstract) [23] Michelnore R W.Paran I,Kesseli R V.Identificati0n of markers linked to disease resistance genes by bulked segregate analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States ofAmerica,1991,88:9828—9832. [24j 许绍斌,陶玉芬,杨昭庆,等.简单快速的DNA银染和胶保存 方法.遗传,2002,24(3):335—336 Xu S B,Tao Y F,Yang Z Q.et a1.A simple and rapid methods used for silver staining and gel preservation. Hereditas,2002,24(3):335—336.(in Chinese with English abstract) [25] Lander E S,Green P,Abrahamson J.Mapmarker:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics。1987,1(2):174—181. [26] Kosambi D D.The estimation of map distances from recombination values Annals oy Eugenics.1943.12:172~ 175. [27] Malepszy S,Niemirowicz—Szczytt K.Sex determination in cucumber(Cucumis sativus)as a model system for molecular biology.Plant Science,1991,80:39—47. [28] 孟繁静.植物花发育的分子生物学.北京:中国农业出版社 2000:86—1O5. Meng F J Molecular Biology of Plant Flower Development.Beijing:China Agriculture Press.2000:86— 105.(in Chinese) [293 Terefe D,Tatlioglu T Isolation of a partial sequence of a putative nucleotide sugar epimerase,which may involve in stamen development in cucumber(Cucumis sativus I .). 丁 G Theoretical and Applied Genetics.2005.1 1 l:1 300— 1307. [3O] 陈惠明,卢向阳,刘晓虹,等.两个薪发现的黄瓜性别决定基 因遗传规律的研究.园艺学报,2005,32(5):895—898. Chen H M,Lu X Y,Liu X H,et a1.Two sex determining genes and their inheritance in cucumber.Acta Horticulturae Sinica,2005,32(5):895—898.(in Chinese with English abstract) [31] 闫立英,娄丽娜,娄群峰,等.全雌黄瓜单性结实性的遗传分 析园艺学报,2008,35(10):1441—1446. Yan L Y,Lou I N,Lou Q F,et a1.Inheritance of parthenocarpy in gynoecious cucumber.Acta Horticulturae Sinica,2008,35(10):1441—1446.(in Chinese with English abstract) [32] 石运庆,牟秋焕,,等.DNA分子标记及其在作物遗传育 种中的应用.山东科学,2005,18(2):22—29. Shi Y Q,Mu Q H,Li P,et a1.DNA molecular markers and their application in crops breeding Shandong Science,2005, 18(2):22—29.(in Chinese with English abstract)